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Comprehensive weather/climate models 
play an important role in modern society

• Forecasting extreme weather events (e.g. for Disaster 
Risk Reduction)

• To provide estimates of future global climate – key  
scientific input on climate mitigation (decarbonising
the world economy)

• To provide guidance on infrastructure investment for 
regional climate adaptation

• To foresee regional consequences of geoengineering
proposals (“Plan B”)



F = ma E = w

Comprehensive Earth-System models are based on the 
laws of physics eg
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Unpacks into billions of individual equations, 

describing scales of motion from planetary scales 

to microscopic scales.
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Even the world’s biggest computers aren’t big enough to 

represent all scales of motion in the atmosphere down to 

viscous scales

…..

Simplified closure formulae to approximate processes 

(eg clouds) that the simulator can’t resolve. Some 

improvements if these closure schemes are formulated 

stochastically.

10,000km

10-100km

millions of equations



Dynamical Core Parametrisations
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D = P

The Canonical Numerical Ansatz



Truncation scale?

O(1000km)

O(1km)

O(10km) NWP

O(100km) Climate

8-9 orders of magnitude 
above viscous scale



grid box grid box

Convective parametrisation OK if the world 

looks like this…





The reality of the situation

grid box grid box



(Nastrom and Gage, 1985) 



Small 
tendency

Medium 
tendency

Large 
tendency

Coarse-graining  
(Shutts and Palmer, 2007)

Assume T1279 (16km) model = “truth”. 

Assume  T159  coarse-grain “model” grid. 

Bar= Subset of total temperature 
parametrisation tendencies driven by 
T1279 fields coarse-grained to T159.

Curve= Corresponding “true” sub-T159-
scale tendency. 

Ie when the parametrisations think the 
sub-grid pdf is a thin hat function, the 
reality is a much broader pdf. 

The standard deviation increases with 
parametrised tendency – consistent with 
multiplicative noise stochastic schemes. 

Callado-Palarès and Shutts,Phil Trans 2014 



Does it matter that we can’t resolve 
convective cloud systems?

Yes!



How do we get to a 1km- 100m global grid?

• Wait! >20yrs? Even then maybe can’t afford the 
power costs. Can society afford to wait that long? 

• Fund a “Climate CERN” to house a prototype 
multi-exaflop computer dedicated to climate. 

• Revisit the way we go about solving the equations 
numerically amd embrace the concept of 
approximate computing!

(Nb 2 and 3 are not mutually exclusive!)
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X = F[X]

d X =
dF

dX
 d X



• Multiplicative Noise
P     (1+σ)P
• Improved reliability 

of probabilistic 
weather forecasts

• Reduced systematic 
errors, e.g. warm 
pool convection, 
wind stress, MJO 
(e.g. Weisheimer et 
al, 2014)



Experiments with the Lorenz ‘96 System  
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Assume Y 
unresolved

Approximate 
sub-grid 
tendency by U

Deterministic: U = Udet

Additive: U = Udet + ew,r

Multiplicative: U = (1+er) Udet

Where:
Udet = cubic polynomial in X
ew,r = white / red noise
Fit parameters from full model

Deterministic 
parametrisation of 

Y

Stochastic  
parametrisation of 

Y

Christensen et al, Climate Dynamics 2014



Stochastic Parametrisation

Triangular 

Truncation 

Partially Stochastic  

If parametrisation is partially stochastic, are we “over-engineering” our models 
(parametrisations, dynamical core) by using double precision bit-reproducible 

computations throughout?

Are we making inefficient use of computing resources that could otherwise be 
used to increase resolution?



Greater Accuracy with Less                    
Precision

More accurate than but as  
computationally cheap as



The chip that produced the frame with the most errors (right) is about 15 times more efficient in terms of speed, 

space and energy than the chip that produced the pristine image (left).

Superefficient inexact chips 

Krishna Palem. 

Rice University

http://news.rice.edu/2012/05/17/computing-experts-unveil-superefficient-inexact-chip/

Prototype
Probabilistic 

CMOS
Chip





Experiments with the Lorenz ‘96 System
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Y

Stochastic 
Chip Emulator



Pruned Hardware
• Parts of the floating-point unit that are hardly used or do not have a 

strong influence on significant bits are physically removed to obtain an 
increase in performance and a reduction in power consumption.

• We are collaborating  with Krishna Palem and Co-workers to investigate 
pruned hardware setups in simulations of Lorenz 96 and the Reading 
Spectral Model.

• We design customised adder/subtractor and multiplier blocks for the 
floating point unit.

Power and Performance 
(floating-point unit only)

Power
Double precision: 100%

Performance
Double precision: 100%

Hardware 1
Adder/Subtractor
Multiplier

51%
25%

119%
128%

Hardware 2
Adder/Subtractor
Multiplier

34%
8%

135%
123%



Pruned Hardware

• The error due to inexact hardware is much smaller compared
to the error with parametrised small scales.

• We are currently investigating the use of pruned hardware and 
inexact memory in a spectral dynamical core (IGCM)

L96 L96



Do we need to represent all variables, e.g. near the 
truncation scale, by double precision floating point 

numbers?

Energy needed to move data (from processor to 
processor or processor to memory) much less with 

low precision representations



IFS: Single vs
Double Precision

T399 20 member 
IFS

Can run 15 day 
T639 at single 

precision for cost 
of 10-day T639 at 
double precision



Field Programmable Gate Array (FPGA)

• FPGAs are integrated circuits that can be 
configured by the user (programmable 
hardware).

• Numerical precision can be customised to the 
application.

• We collaborate with Imperial College to 
implement Lorenz 96 on FPGAs.

• We scale the size of the Lorenz 96 setup to the 
size of a high performance application to obtain 
realistic estimates for performance (NX = 20,000).



Field Programmable Gate Array (FPGA)

Single precision
on FPGA

Reduced precision with 15 bit
significand for large scales and 11 bit
for small scales

Reduced precision with 12 bit
significand for large scales and 10 bit
for small scales

1.0 1.9 2.5

Relative speed-up:

Hellinger distance for large scale quantities with
reduced precision:

Lorenz 96



Decreasing 
precision, and 
determinism

Greater Accuracy with Less Precision?

Use freed-up 
computing 
resource to 

extend 
simulator to 

higher 
resolution?



More accurate “weather forecasts“ with less precision
Reading Spectral Model

Düben and Palmer, 2014. MWR. 

T159 “Truth”

• The stochastic chip / reduced precision emulator is used on 50% of numerical workload:
All floating point operations in grid point space
All floating point operations in the Legendre transforms between wavenumbers 31 and 85. 

• Imprecise T85 cost approx that of T73
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The important practical question

Supercomputers with variable and programmable levels 
of inexactness will require significant hardware redesign.

Chip manufacturers will not develop these unless they 
perceive there is a substantial market for them.

Could the notion of inexact computing be relevant in 
other areas of physics (plasma, computational fluid 
dynamics, astro, cosmology, human brain, etc….)?


