
Significance Analysis for Numerical Models

Jan Riehme, Uwe Naumann
LuFG Informatik 12, RWTH Aachen University

Software and Tools for Computational Engineering
52074 Aachen, Germany

Email: [riehme,naumann]@stce.rwth-aachen.de

Abstract—We report first results of a significance analysis
developed within the FET-open project SCoRPiO1. SCoRPiO
aims to introduce result significance to the hardware de-
velopment process in order to reduce the safeguard power
consumption by permitting a controlled level of imprecision
into computations and data.

An important aspect of the project is to formally introduce
computational significance as an algorithmic property and
expose reliability and energy to the level of the programming
model and algorithm. Based on that, SCoRPiO seeks to devise
techniques that facilitate automatic characterization of code
and data significance using compile-time or runtime analysis.

As a part of SCoRPiO techniques for significance analysis
are developed: Based on the source code of algorithms and user-
provided significance information, the analysis should identify
parts of the algorithms that can be evaluated with less accuracy
and, hence, higher energy efficiency.

We describe in this paper the initial version of our signifi-
cance model. At the moment we start applying it to larger, more
realistic codes. First results already initiated the development of
refinement strategies for the analysis. Therefore we do present
ideas and work in progress instead of a finished theory.

I. INTRODUCTION

The SCoRPiO project observes that part of the problem
of energy inefficiency is that all computations are treated
as equally important, despite the fact that only a subset of
these computations might suffice to achieve an acceptable
QoS. SCoRPiO seeks to devise techniques that facilitate au-
tomatic characterization of code and data significance, using
compile- or run-time analysis. In other words, SCoRPiO will
invent methods and algorithms to assess the significance of a
set of computations and data structures. An important step in
the direction of automatically (or semi-automatically) detect-
ing component criticality is to formally define significance
of different code fragments, at different times during the
execution life of applications.

To our knowledge no rigorous theoretical approach to
quantify, or even define significance of numerical models
and codes exists so far. Nevertheless, numerous Monte Carlo
based significance tests are applied already during different
stages of real-world system design.

The significance analysis introduced in SCoRPiO is part
of the development phase of an algorithm, that may poten-
tially be executed on an unreliable processing core. Thus,

1http://www.scorpio-project.eu/outline/

significance analysis can be considered as a compile time
technique, where a high computational effort by the compiler
can be tolerated. In the context of this project we develop
a concept of significance for numerical models based on
Algorithmic Differentiation and interval evaluation of C and
C++ codes. We investigate also numerical approaches that
are highly parallel, yet very costly and may require the use
of massively parallel systems (recursive intervall splitting,
sampling, Monte Carlo methods, exhaustive search).

The rest of the document is organized as follows: In
section II we provide an overview of the suggested signifi-
cance analysis. A more rigorous definition of significance is
developed in section III. In section IV we apply the proposed
significance analysis to some examples.

II. METHODS FOR SIGNIFICANCE ANALYSIS

In this section we provide an overview of the significance
analysis developed in SCoRPiO by discussing possible ap-
proaches in general, whereas in section III we develop the
significance analysis approach in more detail.

Our literature research did not arose any previous work
in significance analysis for numerical models that surpassed
discussions of error propagation. Therefore all methods
to tackle significance discussed in this section are new
contributions that utilizes well established techniques (in-
terval arithmetic, Algorithmic Differentiation, Monte Carlo,
Sampling) in a new context.

A. Goal of Significance Analysis

Based on a given implementation of an algorithm and
user provided significance and error tolerance information,
parts of the given code that are insignificant under certain
conditions have to be identified. Moreover, these, potentially
dynamic, conditions need to be identified as well.

The user has to specify ranges of input variables, and
specify minimum significance bounds or maximum error
bounds of the results, depending on the chosen significance
criterion.

An identified insignificant computation has a series of
appealing properties:
• It can potentially be executed on unreliable hardware

as a whole.
• It can be computed with lower precision.

• It can be replaced by a fixed representative of the output
range of the code.

• It can be replaced by a less computationally expensive
computation reusing previously computed results.

To develop a robust significance analysis, we investigate
the methods described in the following sections.

In this section we assume that the application code
implements a mathematical function f : IR −→ IR, that
computes a scalar output y ∈ IR by evaluating y = f(x)
(e.g. running the given code) for a given scalar input x ∈ IR.

B. Computation in interval arithmetic (IA)

For an input interval [x] = [x, x] = {x ∈ IR|x ≤ x ≤ x}
with lower bound x ∈ IR and upper bound x ∈ IR, interval
arithmetic (IA) [1], [2] allows to compute enclosures f [x]
that contain all possible function values of f(x) for x ∈ [x],
that is f [x] ⊇ {f(x)|x ∈ [x]} over the input interval [x].

Evaluations in interval arithmetic might suffer from the
so called wrapping effect under certain conditions, resulting
in a large overestimation of [y] = f [x]. Affine arithmetic [3]
promises to reduce the wrapping effect in many cases.

For interval evaluations, insignificance can be defined by
the inequality

w([y]) < ε, (1)

i.e. input variable x is called insignificant for y if the width
of the output interval [y] = f [x] is smaller then the user
provided significance bound ε.

If the output interval [y] = f [x] for the input interval [x] is
“acceptable” in the sense of inequality (1), then all values
x ∈ [x] from input interval [x] are insignificant. This
knowledge can be exploited by the following modifications
to the original evaluation of function f :
• Unreliable hardware: Using unreliable hardware to

compute an actual input x̌ does not harm the result
f(x̌) as long as x̌ ∈ [x]. Than the reliable (e.g.
standard) evaluation of f(x̌) will give a reasonable
result f(x̌) ∈ [y].

• Lower precision: Computing the actual input x̌ with
a lower precision does not harm the result f(x̌) as
long as x̌ ∈ [x]. Than the evaluation of f(x̌) in higher
(e.g. standard) precision will give a reasonable result :
f(x̌) ∈ [y].

• Replace by a constant: If the actual input value x̌ is in
the interval [x] (i.e. x̌ ∈ [x]), the computation of f(x̌)
can be entirely omitted by having f return a constant
value y̌ ∈ [y] (e.g. the midpoint m[y] =

y−y
2 of [y]).

If the significance analysis for a given input interval [x]
does not succeed in identifying insignificant computations,
sub-intervals of [x] might be searched by heuristic sampling.

If the number of inputs increases, the sub-interval ap-
proach becomes a combinatorial problem (as any high
dimensional forward analysis such as Finite Differences,

Tangent-Linear models, Monte Carlo). Still, since the eval-
uation of different sub-intervals can be performed indepen-
dently, such high dimensional problems can be tackled by
exploiting parallelism.

Note that with pure interval arithmetic, significance esti-
mation for intermediate program variables v (contained in
the code of the implementation of f(x)) is possible only by
an additional sampling over the (possibly large number) of
intermediate program variables.

The following section introduces a concept that allows
to estimate significance of intermediate program variables
directly with interval valued adjoints, based on algorithmic
differentiation (AD) [4], [5] and interval arithmetic.

C. Interval Derivatives by Algorithmic Differentiation

This subsection outlines our favorite approach for auto-
matic significance detection. See [6] for details.2

The template class library dco/c++ (Derivative Code by
Overloading in C++) [7], [8], [9] is a C++ implementation
of tangent-linear and adjoint Algorithmic Differentiation
(AD) [4], [5], developed at the institute Software and Tools
for Computational Engineering (STCE) at RWTH Aachen
University. For numerical codes implementing y = f(x),
dco/c++ exploits overloading of operators and intrinsic
functions to compute derivatives ∇xy = ∇xf(x) of outputs
y with respect to input x.

For the purpose of significance analysis dco/c++
templates were specialized with an interval base type
(dco/scorpio), that allows to apply AD to interval func-
tions [10]. Thus interval enclosures of f [x] and its first order
derivative ∇[x][y] = ∇[x]f [x], that is the derivative of the
function result [y] with respect to the input variable [x], can
be computed:

∇[x][y] = ∇[x]f [x] ⊇ {∇xf(x̂)|x̂ ∈ [x]} . (2)

If dco/scorpio computes an interval derivative ∇[x][y]
of the function result [y] = f [x] with respect to input [x]
without overestimation (equality in (2)), we have

∇[x][y] =

[
min
x̂∈[x]
{∇x̂f(x̂)},max

x̂∈[x]
{∇x̂f(x̂)}

]
. (3)

In other words, the steepest downward and upward slopes
of f in the interval [x] form the bounds of the interval
derivative. With overestimation only the following inequal-
ities hold:

∇[x][y] ≤ min
x̂∈[x]
{∇x̂f(x̂)}, ∇[x][y] ≥ max

x̂∈[x]
{∇x̂f(x̂)}. (4)

Figure 1(a) provides a schematic example of an interval
evaluation process for a function f(x), using the compu-
tational graph. From input x four intermediate variables
are used before the final output value y is computed.
Every node in the computational graph represents an atomic

2Available under www.scorpio-project.eu.

[x]

[v1]

[v2]

[v3]

[v4]

[y]

∂[v1]
∂[x]

∂[v2]
∂[x]

∂[v4]
∂[x]

∂[v2]
∂[v1]

∂[v3]
∂[v2]

∂[v4]
∂[v3]

∂[y]
∂[v4]

(a) Computational graph of f(x) with local partials

[x]

[v1]

[v2]

[v3]

[v4]

[y]

∇[v4][y]

∇[v3][y]

∇[v2][y]

∇[v1][y]

∇[x][y] = ∇xf(x)

(b) Adjoints available after evaluating ∇xf(x)

Figure 1. Computational graph and adjoint propagation

operation (+, -,*, /) or intrinsic function evaluation (sin,
cos, exp, etc.). Algorithmic Differentiation annotates the
edges towards a vertex v in the computational graph with
local partial derivatives of the operation represented by v
with respect to its arguments (vertices with edges pointing
towards vertex v).

Derivatives by means of adjoint mode AD are computed
by propagating derivatives through the annotated compu-
tational graph, incorporating the local derivatives on the
edges: By adjoint models derivatives (adjoints) of outputs
are propagated towards adjoints of the inputs.

Once the interval derivative ∇[x][y] = ∇[x]f [x] has been
evaluated for an adjoint model build by dco/scorpio,
interval derivatives ∇[v][y] of the function result with respect
to all intermediate program variables are also available due
to the internal structure of dco/c++ (figure 1(b)). There-
fore, we obtain an estimation of the extremal slopes of all
intermediate program variables. In contrast to pure interval
arithmetic, described in section II-B and sampling based
methods discussed shortly in section II-D, this approach
allows an efficient significance analysis for all intermediate
program variables.

Insignificance of the intermediate program variable
v based on interval valued adjoints can be defined by the
following inequality:

w([v] · ∇[v][y]) < ε, (5)

i.e. v is called insignificant for y if the width of ∇[v][y]
scaled over the interval [v] is smaller then the user provided
significance bound. Note that inequality (5) can be applied
to input variables too.

Insignificant variables might be treated as described in
section II-B. For example, insignificant variables could be
replaced by a constant, or could be computed on unreliable,
but less power consuming hardware. In addition, since with
interval valued adjoints all intermediate program variables
can be tested for significance too, the following new modi-
fication to the evaluation of function f arises:
• Replace by a previous result: If an insignificant

program variable v is evaluated repeatedly (i.e. the
same memory location is overwritten with new values),
a previously computed value v̂ can be reused for v̌ if
additionally holds [v̂] ⊆ [v̌] for the interval evaluation.
If so, the computation of a new value v̌ for v can be
entirely omitted.

Note that the reused value v̂ will not be replaced by
a constant after the significance analysis: Different input
values x̄, x̃ ∈ [x] might lead still to different intermediate
values of v̂ and v̌. Consequently, one can expect to introduce
less error to the evaluation of function f by the modification
Replace by a previous result than by Replace by a constant.

In section III we introduce a number of different criteria
based on interval valued adjoints that will be considered later
too.

Overestimation of [y] = f([x]) and thus of ∇[x][y] due
to the wrapping effect in interval evaluations might be
addressed by affine arithmetic [3].

Again, if the result of the significance analysis for the
given input interval [x] are not satisfactory, heuristics can
be used to search for improved significance results in sub-
intervals of [x] by sampling.

For an increasing number of inputs, the sub-interval
approach becomes a combinatorial problem again. Since the

significance analysis can be considered as a compile time
technique which can be done in parallel for several sub-
intervals, this can be tolerated.

Limitations of Interval valued Derivatives: Note that dif-
ferentiability is defined for differentiable functions only:
• Integer - based programs need to be checked carefully

to determine if integer arithmetic can be replaced by
floating point arithmetic.

• For some application kernels within SCoRPiO, integer
data are converted into floating point data for non-
integer calculations. The result is then converted back
to integer by rounding, flooring, or ceiling, which are
discontinuous operations. Replacing integer arithmetic
with floating point arithmetic preserves these disconti-
nuities. We have to investigate in detail how these dis-
continuous operations can be evaluated in differentiated
interval arithmetic.

D. Monte Carlo Simulation and Exhaustive Search

Monte Carlo methods (MC) do not require differentiable
functions, however they can not handle intermediate vari-
ables efficiently. In any case, such methods can serve as a
backup option for cases where the substitution of integer
arithmetic by floating point arithmetic is not possible (leads
to invalid results), and also as a verification tool.

A simple framework for MC - simulations was created
and used to compute enclosures [y] = f [x] and ∇[x][y] so
that the derivative based criterion (5) can be applied too.

If the number of inputs increases, Monte Carlo methods
and exhaustive search become combinatorial problems as
well, without limiting the applicability of the methods, since
they are applied at compile-time and can be accelerated by
exploiting parallelism.

III. DEFINITION OF SIGNIFICANCE

This section introduces significance of numerical models
as a mathematical concept [6], and the significance model
developed for SCoRPiO (that is work in progress).

Definition 1 (Significance for a scalar valued function):
Let f : X −→ Y : y = f(x),X ⊆ IRn, y ⊆ IR, be a
differentiable scalar valued function, [x] ∈ [IR]

n be an input
interval vector, and [y] = f [x] ∈ [IR] the image of the
interval function f [x] for [x]. Moreover, let ε ∈ IR be an
user-defined significance bound.

Let f(1)([x], [y], [y](1)) be an interval evaluation of a first
order adjoint model of f obtained by AD.

By setting the initial adjoint [y](1) to the point interval
[1], an evaluation of

f(1)([x], [y], [1]) (6)

yields
[x](1) = ∇[x][y] = ∇[x]f [x], (7)

that is the interval gradient ∇[x][y] of f [x] at the evaluation
interval [x].

Table I
ALTERNATIVE SIGNIFICANCE CRITERIA

Criteria Comment

w([v] · ∇[v][y]) width of ∇[v][y] scaled over [v]
w(∇[v][y]) width of ∇[v][y], measures

variation of ∇[v][y] of over [v]
|∇[v][y]| ·

w[y]
w[v]

max absolute rate of change scaled
with ratio of output width
to input width

A scalar input interval [xi],1 ≤ i ≤ n, is called significant
for the scalar output interval [y] if

w([xi] · (∇[x]f [x])i) = w([xi] · [x](1),i) > ε. (8)

The complete input interval vector [x] is called significant
for the scalar output y if

max(w([x] .• ∇[x]f [x])) = max(w([x] .• [x](1))) > ε, (9)

where a .• b denote the element-wise multiplication of two
vectors a, b ∈ [IR]

n.
Example 1 (Simple example): Let y = f [x] = x

1000 ,
[x] = [1, 3].

Interval evaluation : y = f [x] = [1
1000 ,

3
1000]

Interval Gradient : ∇[x]f [x] = 0.001
Significance test:

w([x] · ∇[x]f [x]) = w([1, 3] · 0.001) = 0.002 > ε

Conclusion: If ε ≤ 0.002, argument x ∈ [1, 3] of
function f is significant, if ε > 0.002, argument
x ∈ [1, 3] of function f is not significant.

Note 1 (What is an input variable?): After the adjoint
propagation phase the interval valued adjoint model created
by dco/scorpio contains the derivative∇[vj][y] of output
[y] with respect to all intermediate program variables vj , j =
1, . . . , k, in the internal data structures of dco/scorpio.
3

Thus the significance definition can be applied to arbi-
trary program variables vj ,j = 1, . . . , k, appearing in the
implementation of a differentiable scalar valued function
f : X −→ Y : y = f(x),X ⊆ IRn, y ⊆ IR, for a given
input interval vector [x] ∈ [IR]

n:
An intermediate program variable vj , 1 ≤ j ≤ k, is called

significant for the scalar output interval [y] if

w([vj] · ∇[vj][y]) = w([vj] · [vj,(1)]) > ε. (10)

Note 2 (How to check significance?): Table I contains
alternative significance criteria for program variables v, that
can be used as replacements for (8) and (10).

Note 3 (Bound ε): The meaning of the given bound ε
depends on the underlying application and the chosen sig-
nificance criterion. Nevertheless the bound might be more
complex than just a number.

3Compiler generated intermediates are not contained in the internal
structure.

IV. EXAMPLES

This section discusses the application of the significance
concept to various examples. In all cases, the inputs to the
analysis are the following:
• A program (C / C++ source code) that computes a func-

tion y = f(x) with intermediate variables v1, v2,
• Input ranges of input variable.
• A significance/error bound ε.
The output of the analysis is a list of program variables

that are insignificant given the specified input ranges, and
under the user-specified significance/error bound. If vari-
ables are overwritten in the code, the analysis associates
(and reports) an instance number with each overwrite of the
variable. Therefore, the significance of each variable can
vary in different appearances of the variable in the code,
either spatially (for example different places in the code), or
temporally (for example across different loop iterations).

A. Simple Example

v1 = log(x1); v2 = v1 + x2; y = v2;

Significance criterion: w([v] · ∇[v][y]) > ε with ε = 1

Results for ranges [x1] = [1, 2], [x2] = [1, 20]

[v] ∇[v][y] [v] · ∇[v][y]

[x1] [1, 2] [0.5, 1] [0.5, 2]
[x2] [1, 20] [1, 1] [1, 20]
[v1] [0, 0.693] [1, 1] [0, 0.693]
[y] [1, 20.7] [1, 1] [1, 20.7]

Interpretation Intermediate v1 turns out to be insignificant
over the complete input ranges of x1 and x2, since w([v1] ·
∇[v1][y]) < ε. Using the midpoint m[v1] = .3465 of v1 as
constant initializer for v1, the code can be simplified for the
complete input range of x1 and x2 to:
v1 = .3465; y = v1 + x2;

An interval evaluation of the modified code for ranges
[x1] = [1, 2], [x2] = [1, 20] gives [y] = [1.35, 20.3], which
is a sub-interval of the output range of the original code.

B. (In-) Significant Sub-Intervals

v1 = x * x; v2 = v1 * x; v3 = 1/v2;
v4 = sqrt(v3); y = v4 * x ;

Significance criterion: w([v] · ∇[v][y]) > ε with ε = 0.04

Results for range [x] = [1, 36000]

[v] [v] · ∇[v][y]

[x] [1, 3.6e+04] [-1.47e+25, 3.5e+04]
[v1] [1, 1.3e+09] [-4.91e+24, -2.72e-28]
[v2] [1, 4.67e+13] [-4.91e+24, -2.72e-28]
[v3] [2.14e-14, 1] [1.17e-14, 1.15e+11]
[v4] [1.46e-07, 1] [1.53e-07, 3.5e+04]
[y] [1.46e-07, 3.6e+04] [1.53e-07, 3.5e+04]

Interpretation For the input range [1, 36000], all interme-
diate and the input variable are significant and have to be

evaluated without error. This is because w([v] · ∇[v][y]) > ε
for all v ∈ {v1, v2, v3, v4}.
Results for range [x] = [10000, 36000]

[v] [v] · ∇[v][y]

[x] [1e+04, 3.6e+04] [-17.2, 0.036]
[v1] [1e+08, 1.3e+09] [-5.74, -2.3e-06]
[v2] [1e+12, 4.67e+13] [-5.74, -2.3e-06]
[v3] [2.14e-14, 1e-12] [0.000107, 0.123]
[v4] [1.46e-07, 1e-06] [0.00146, 0.036]
[y] [0.00146, 0.036] [0.00146, 0.036]

Interpretation
For [x] = [10000, 36000] intermediate variable v4 turns out
to be insignificant, since w([v] · ∇[v4][y]) = 0.034536 < ε,
which is a sub-interval of the original output range.
Opting to replace code fragments with a constant, a modified
code might be:
ASSERT(x < 10000) {

v1 = x * x; v2 = v1 * x; v3 = 1/v2; }
v4 = sqrt(v3); y = v4 * x ;

ASSERT(x > 10000) {
v4 = sqrt(5.11e-13); y = v4 * x ; }

Evaluating the modified code for [x] = [10000, 36000] in
interval arithmetic results to [y] = [0.00715, 0.0257], which
is a sub-interval of the output range of the original code.

C. A slightly more complex example

v1 = x1 * x2; v2 = sin(x1); v3 = exp(v2);
v4 = v3 * v1; v5 = log(v4);
y = v5 / 10 + x2 / 100;

Significance criterion: w([v] · ∇[v][y]) > ε with ε = 2.5
Results for ranges [x1] = [1, 36000], [x2] = [1, 36000]

[v] [v] · ∇[v][y]

[x1] [1, 3.6e+04] [-3.45e+13, 3.45e+13]
[x2] [1, 3.6e+04] [0.01, 9.58e+08]
[v1] [1, 1.3e+09] [1.04e-11, 9.58e+08]
[v2] [-1, 1] [-9.58e+08, 9.58e+08]
[v3] [0.368, 2.72] [1.04e-11, 9.58e+08]
[v4] [0.368, 3.52e+09] [1.04e-11, 9.58e+08]
[v5] [-1, 22] [-0.1, 2.2]
[y] [-0.09, 362] [-0.09, 362]

Interpretation Intermediate v5 turns out to be insignifi-
cant over the complete input ranges of x1 and x2, since
w(∇[v5][y] · [v5]) < ε. Using the midpoint m(v5) = 10.5 of
v5 as constant initializer for v5, the code can be simplified
for the complete input range of x1 and x2 to:
v5 = 10.5; y = v5 / 10 + x2 / 100;

Evaluating the modified code for ranges [x1] = [1, 36000],
[x2] = [1, 36000] in interval arithmetic results to [y] =
[1.06, 361], a sub-interval of the original output range.

D. Re-use Previous Results for Overwritten Variables
v1 = x1*x2; v2{0} = sin(x1); v3 = exp(v2);
v4 = v3*v1; v2{1} = log(v4);
y = v2/10 + x2/100;

Significance criterion: w([v] · ∇[v][y]) > ε with ε = 2.5
Results for ranges [x1] = [1, 36000], [x2] = [1, 36000]

[v] [v] · ∇[v][y]

[x1] [1, 3.6e+04] [-3.45e+13, 3.45e+13]
[x2] [1, 3.6e+04] [0.01, 9.58e+08]
[v1] [1, 1.3e+09] [1.04e-11, 9.58e+08]
[v2{0}] [1.0e-11, 9.6e+08] [-9.58e+08, 9.58e+08]
[v3] [0.368, 2.72] [1.04e-11, 9.58e+08]
[v4] [0.368, 3.52e+09] [1.04e-11, 9.58e+08]
[v2{1}] [-1, 22] [-0.1, 2.2]
[y] [-0.09, 362] [-0.09, 362]

Interpretation The second value [v2{1}] of intermediate v2
turns out to be insignificant over the complete input ranges
of x1 and x2, since w([v2{1}] · ∇[v2{1}][y]) < ε. Since
[v2{0}] ⊆ [v2{1}], the first value [v2{0}] of intermediate v2
can be used instead. Thus intermediates v3, v4, and [v2{1}]
does not need to be computed. The code can be simplified
for the complete input range of x1 and x2 to:
v1=x1*x2; v2=sin(x1); y=v2/10+x2/100;

The modified code computes for [x1] = [1, 36000], [x2] =
[1, 36000] in interval arithmetic [y] = [−0.09, 360] (which
is a sub-interval of the output range of the original code):

[v] [v] · ∇[v][y]

[y] [-0.09, 362] [-0.09, 362]
[x1] [1, 3.6e+04] [-3.6e+03, 3.6e+03]
[x2] [1, 3.6e+04] [0.01, 360]
[v1] [1, 1.3e+09] [0, 0]
[v2{0}] [-1, 1] [-0.1, 0.1]
[y] [-0.09, 360] [-0.09, 360]

E. Real world test cases

We applied our prototype implementation of the adjoint
based significance analysis to some more complex test
cases such as a mid/small size CFD code and a financial
application (European call option pricing, solving either a
partial differential equation or via Monte Carlo simulation).
Unfortunately, (iterative) solvers involved accelerated the
wrapping effect resulting in unbounded interval values of
program variables vj destroying any insignificance. First
experiments with a recursive interval splitting algorithm for
variables vj that exceed the given significance bound, look
promising. A semi-automatic parallel analysis based in that
approach is under development.

V. SUMMARY AND OUTLOOK

We have introduced a formal definition of significance, as
well as significance criteria based on interval valued adjoints.
At this point we are extending our prototype implementation
of the adjoint based significance analysis to handle larger
codes by parallel recursive interval splitting as described in
section IV-E. By doing that, new insight into the nature of
the associated significance and error bounds will be gained
for more general test cases.

The influence of overestimation by interval evaluations
should be investigated by computing alternative enclosures
based on affine arithmetic [3], slopes [11], or Monte Carlo
simulations for selected kernels.
Moreover, for integer codes, such as the multimedia kernels,
the role of discontinuities has to be investigated by compar-
ing the results attained by AD with those produced from
sampling or Monte Carlo methods.

ACKNOWLEDGEMENT

The authors wish to thank all SCoRPiO project partners
for fruitful discussions, especially the project coordinator
Nikolaos Belas.

REFERENCES

[1] R. E. Moore, Interval Analysis. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1966.

[2] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction
to Interval Analysis, 1st ed. Society for Industrial
and Applied Mathematics, 1 2009. [Online]. Available:
http://amazon.com/o/ASIN/0898716691/

[3] L. H. de Figueiredo and J. Stolfi, “Affine arithmetic:
Concepts and applications,” Numerical Algorithms, vol. 37,
no. 1-4, pp. 147–158, 2004. [Online]. Available: http:
//dx.doi.org/10.1023/B:NUMA.0000049462.70970.b6

[4] U. Naumann, The Art of Differentiating Computer Programs.
An Introduction to Algorithmic Differentiation., ser. Software,
Environments, and Tools. SIAM, 2011.

[5] A. Griewank and A. Walther, Evaluating Derivatives: Prin-
ciples and Techniques of Algorithmic Differentiation, 2nd ed.
SIAM, 2008.

[6] J. Riehme and U. Naumann, “D1.1: Significance Based
Computing Modeling,” RWTH Aachen, Tech. Rep.,
June 2014. [Online]. Available: www.scorpio-project.eu/
wp-content/uploads/2014/07/Scorpio D1.1.pdf

[7] Software and Tools for Scientific Engineering, RWTH Aachen
University, Germany, “Derivative Code by Overloading in
C++ (dco/c++),” http://www.stce.rwth-aachen.de/software/
dco cpp.html.

[8] J. Lotz, K. Leppkes, and U. Naumann, “dco/c++ -
Derivative Code by Overloading in C++,” RWTH Aachen,
Tech. Rep. AIB-2011-06, May 2011. [Online]. Available:
http://aib.informatik.rwth-aachen.de/2011/2011-06.ps.gz

[9] J. Lotz, U. Naumann, and J. Ungermann, “Hierarchical algo-
rithmic differentiation: A case study,” in Recent Advances in
Algorithmic Differetiation. Springer, 2012, pp. 187–196.

[10] L. Rall and G. Corliss, “Automatic differentiation: point
and interval automatic differentiation: Point and interval,”
in Encyclopedia of Optimization, C. A. Floudas and P. M.
Pardalos, Eds. Springer US, 2009, pp. 165–170. [Online].
Available: http://dx.doi.org/10.1007/978-0-387-74759-0 28

[11] H. Muñoz and R. B. Kearfott, “Slope intervals, generalized
gradients, semigradients, slant derivatives, and csets,” Reli-
able Computing, vol. 4, no. 3, pp. 163–193, 2004.

