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Abstract—One factor that contributes to high energy con-
sumption is that all parts of the program are considered
equally significant for the accuracy of the end-result. However,
in many cases, parts of computations can be performed in
an approximate way, or even dropped, without affecting the
quality of the final output to a significant degree. In this paper,
we introduce a task-based programming model and runtime
system that exploit this observation to trade off the quality of
program outputs for increased energy-efficiency. This is done in
a structured and flexible way, allowing for easy exploration of
different execution points in the quality/energy space, without
code modifications and without adversely affecting applica-
tion performance. The programmer specifies the significance
of tasks, and optionally provides approximations for them.
Moreover, she provides hints to the runtime on the percentage
of tasks that should be executed accurately in order to reach
the target quality of results. Two different significance-aware
runtime policies are proposed for deciding whether a task
will be executed in its accurate or approximate version. These
policies differ in terms of their runtime overhead but also the
degree to which they manage to execute tasks according to
the programmer’s specification. The results from experiments
performed using six different bencmharks on top of an Intel-
based multicore/multiprocessor platform show that, depending
on the runtime policy used, our system can achieve an energy
reduction of up to 83% vs. a fully accurate execution, and up
to 35% vs. approximate versions that employ loop perforation.
At the same time, our approach always results to graceful
degradation of the final result.

I. INTRODUCTION

One factor that contributes to the energy footprint of
current computer technology is that all parts of the program
are considered to be equally important, and thus are all
executed with full accuracy. However, as shown by previ-
ous work on approximate computing, in several classes of
computations, not all parts or execution phases of a program
affect the quality of its output equivalently. In fact, the output
may remain virtually unaffected even if some computations
produce incorrect results or fail completely.

In this paper, we introduce a novel, significance-driven
programming environment for approximate computing, com-
prising a programming model, compilation toolchain and
runtime system. The environment allows programmers to

trade-off the quality of program outputs for increased
energy-efficiency, in a structured and flexible way. The
programming model follows a task-based approach. For
each task, the developer declares its significance depending
on how strongly the task contributes to the quality of the
final program output, and provides an approximate version
of lower complexity that returns a less accurate result or
just a meaningful default value. The developer controls the
degradation of output quality by specifying the percentage
of tasks to be executed accurately. In turn, the runtime
system executes tasks in a significance-aware fashion, by
employing the approximate versions of less-significant tasks,
or dropping such tasks altogether. This can lead to shorter
makespans and thus to more energy-efficient executions,
without having a significant impact on the final output.

Section II introduces the programming model. Section III
discusses the runtime system, and the different policies used
to drive task execution. Section IV presents the experimental
evaluation on top of an Intel-based multiprocessor/multicore
platform, using a set of benchmark kernels that were ported
to our programming model. Section V gives an overview of
related work. Finally, Section VI concludes the paper and
identifies directions for future work.

II. PROGRAMMING MODEL

Our vision is to elevate significance characterization as a
first class concern in software development, similar to paral-
lelism and other algorithmic properties traditionally being in
the focus of programmers. To this end, the main objectives
of our programming model are: (i) to allow programmers
to express the significance of computations in terms of
their contribution to the quality of the end-result; (ii) to
allow programmers to specify approximate alternatives for
selected computations; (iii) to allow programmers to express
parallelism, beyond significance; (iv) to allow programmers
to control the balance between energy consumption and the
quality of the end-result, without sacrificing performance;
(v) to enable optimization and exploration of trade-offs at
execution time; and (vi) to be user-friendly and architecture
neutral.



Programmers express significance semantics using
#pragma compiler directives. Pragmas-based programming
models facilitate non-invasive and progressive code
transformations, without requiring a complete code rewrite.
We adopt a task-based paradigm, similarly to the latest
version of OpenMP [1]. Task-based models offer a
straightforward way to express communication across
tasks, by explicitly defining inter-task data dependencies.
Parallelism is expressed by the programmer in the form
of independent tasks, however the scheduling of the tasks
is not explicitly controlled by the programmer, but is
performed at runtime, also taking into account the data
dependencies among tasks.

1 #pragma omp task [significant(expr(...))]
2 [approxfun(function())]
3 [label(...)] [in(...)] [out(...)]

Listing 1: #pragma omp task

Tasks are specified using the #pragma omp task directive
(Listing 1), followed by a function which is equivalent to
the task body. The significance of the task is specified
through the significant() clause. Significance takes values in
the range [0.0, 1.0] and characterizes the relative importance
of tasks for the quality of the end-result of the application.
Depending on their (relative) significance, tasks may be
approximated or dropped at runtime. The special values
1.0 and 0.0 are used for tasks that must unconditionally be
executed accurately and approximately, respectively.

For tasks with significance less than 1.0, the programmer
may provide an alternative, approximate task body, through
the approxfun() clause. This function is executed whenever
the runtime opts for a non-accurate computation of the task.
It typically implements a simpler, approximate version of the
computation, which may even degenerate to just setting de-
fault values to the output. If a task is selected by the runtime
to be executed approximately, and the programmer has not
supplied an approxfun version, the task is simply dropped.
It should be noted that the approxfun function implicitly
takes the same arguments as the function implementing the
accurate version of the task body.

Programmers explicitly specify data flow to the task
through the in() and out() clauses. This information is
exploited by the runtime to automatically determine the
dependencies among tasks. Finally, label() can be used to
group tasks, and to assign the group a common identifier
(name), which is in turn used as a reference to implement
synchronization at the granularity of task groups (see next).

The proposed programming model supports explicit
barrier-type synchronization through the #pragma omp
taskwait directive (Listing 2). This can serve as a global
barrier, instructing the runtime to wait for all tasks spawned
up to that point in the code. Alternatively, it can implement
a barrier at the granularity of a specific task group, if the

label() clause is present; in this case the runtime waits for
the termination of all tasks of that group. Finally, the on()
clause instructs the runtime to wait for all tasks that affect
a specific variable or data construct.

1 #pragma omp taskwait [on(...)] [label(...)]
2 [ratio(...)]

Listing 2: #pragma omp taskwait

Furthermore, the omp taskwait barrier can be used to
control the minimum quality of application results. Through
the ratio() clause, the programmer can instruct the runtime
to execute (at least) the specified percentage of all tasks
– either globally or in a specific group, depending on the
existence of the label() clause – in their accurate version,
while respecting task significance (i.e., a more significant
task should not be executed approximately, while a less sig-
nificant task is executed accurately). The ratio takes values in
the range [0.0, 1.0] and serves as a single, straightforward
knob to enforce a minimum quality in the performance /
quality / energy optimization space. Smaller ratios give the
runtime more energy reduction opportunities, however at a
potential penalty on the quality of the produced output.

The compiler for the programming model is implemented
based on a source-to-source compiler infrastructure [2]. It
recognizes the pragmas introduced by the programmer and
lowers them to corresponding calls of the runtime system
discussed in the next section.

III. RUNTIME

To support the above programming mode, we have ex-
tended a task-based parallel runtime system that implements
OpenMP 4.0-style task dependencies [3]. The runtime sys-
tem is organized as a master/slave work-sharing scheduler.
The master thread starts executing the main program sequen-
tially. For every task call encountered, the task is enqueued
in a per-worker task queue. Tasks are distributed across
workers in round-robin fashion. Workers select the oldest
tasks from their queues for execution. When the worker’s
own queue runs empty, the worker may steal one or more
tasks from the queues of other workers.

A. API Extension

The runtime exposes an API that matches with the
pragma-based programming model. Every pragma is trans-
lated in one or more runtime calls. The runtime API is
extended to support the programming model as follows.

The tpc task create() primitive is extended to indicate
the task group and significance of the task, as well as to
supply an alternative (approximate) task function. Also, a
new tpc init group() primitive is added, which is used by
the compiler to pass information about a task group when
its name is encountered for the first time in the program
code. This call is used to create support data structures in



the runtime for the task group, as well as to convey the per-
group ratio of tasks that must be executed accurately. Finally,
next to the existing tpc wait all() call that waits for all tasks
to finish, the new tpc wait group() primitive is introduced
in order to wait for a specific task group to complete.

B. Task Execution

The runtime system has to selectively execute a subset
of the tasks approximately, while respecting the ratio and
task significance specified by the programmer. In general,
the runtime system has no a priori information on how
many tasks will be issued in a task group, nor what the
distribution of significance levels in each task group will
be. This information must be collected at runtime. For
this purpose we have designed and implemented two task
selection policies, briefly described below.

1) Global Task Buffering (GTB): In this policy the master
thread buffers tasks as it creates them, postponing the issue
of tasks in the worker queues. When the buffer is full, or
when a call to tpc wait all() or tpc wait group() is made,
the tasks in the buffer are sorted by significance, and the
most significant ones are selected for accurate execution
according to specified ratio (the rest are executed approx-
imately). If the buffer size is sufficiently large, the runtime
will buffer all tasks until the corresponding synchronization
barrier is encountered, and thus take a fully correct decision
as to which tasks to run accurately/approximately. However,
a large buffer size slows down execution, as the runtime
postpones tasks until the buffer is filled. This problem can
be mitigated by using a smaller buffer window size and
tasks of coarse enough granularity, so that the runtime
system can overlap task issue with task execution. In our
implementation, the buffer size is a configurable parameter
passed to the runtime system at compile time.

2) Local Queue History (LQH): The local queue history
policy avoids task buffering at the master. Tasks are issued to
worker queues immediately as they are created. The worker
decides whether to approximate a task before starting its
execution, based on the distribution of significance levels of
the tasks executed so far, trying to converge to the ratio
specified by the programmer. The overhead of the local
queue history algorithm is the bookkeeping of the statistics
on the execution history of a group. This happens every time
a task is executed. Updating statistics includes accessing an
array of size equal to the number of distinct significance
levels, which is negligible compared to the granularity of
the task. Importantly, in LQH, each worker takes decisions
in a fully distributed way, using only local information
from the tasks that appear in its work queue, without any
coordination. It is thus more realistic and scalable than GTB.
However, given that each worker has only a local view of
the tasks issued, it may fail to meet the quality requirements
set by the programmer.

Benchmark Approximate Approx Degree Qualityor Drop Mild Med Aggr
Sobel A 0% 30% 80% PSNR
DCT D 10% 40% 80% PSNR
MC D, A 50% 80% 100% Rel. Err.

Kmeans A 40% 60% 80% Rel. Err.
Jacobi D, A 10−4 10−3 10−2 Rel. Err.

Fluidanimate A 12.5% 25% 50% Rel. Err.

Table I: Benchmarks used for the evaluation. For all cases,
except Jacobi, the degree of approximation is given by the
percentage of tasks executed approximately. In Jacobi, it is
given by the error tolerance in convergence of the accurately
executed iterations/tasks (10−5 in the native version).

IV. EXPERIMENTAL EVALUATION

We performed a set of experiments to investigate the
performance and energy-reduction potential of the proposed
programming model and runtime policies. In the sequel, we
introduce the benchmarks used, the overall evaluation ap-
proach, and discuss the results achieved for various degrees
of approximation under different runtime policies.

A. Benchmarks and Approach

We use six different benchmark codes, which were re-
written using our task-based pragma directives: (i) the Sobel
filter; (ii) the Discrete Cosine Transform (DCT), used in
JPEG compression and decompression; (iii) MC [4] which
applies a Monte Carlo approach to estimate the boundary
of a subdomain within a larger partial differential equation
(PDE) domain by performing random walks; (iv) K-means
clustering; (v) the Jacobi iterative solver for diagonally
dominant systems of linear equations; and (vi) Fluidanimate,
a code from the PARSEC suite, which applies the smoothed
particle hydrodynamics (SPH) method to compute the move-
ment of a fluid in consecutive time steps.

For each benchmark we apply different approximation
approaches and/or drop tasks, subject to the characteristics
of the respective computation (the details are omitted due
to space limitations). Also, three different degrees of ap-
proximation are studied for each benchmark: Mild, Medium,
and Aggressive (see Table I). They correspond to different
choices in the quality vs. energy and performance space. It
should be noted that, with the partial exception of Jacobi,
quality control is possible solely by changing the ratio
parameter of the taskwait pragma. This is indicative of the
flexibility of our programming model.

The quality of the result is evaluated by comparing it
to the output produced by a fully accurate execution. The
quality metric depends on the computation. For the image
processing benchmarks DCT and Sobel we use the peak
signal to noise ratio (PSNR), whereas for MC, Kmeans,
Jacobi and Fluidanimate we use the relative error.

In the experiments, we measure the performance of our
approach for each benchmark and approximation degree,



using both runtime policies GTB and LQH. Also, for GTB,
we investigate two different cases: using a sufficiently large
buffer so that all tasks of a group are buffered until the
synchronization barrier, referred to as Max-Buffer GTB;
using a smaller buffer depending on the computation, so that
task execution can start earlier, called User-Defined GTB.

As a reference, we compare our approach against: (i) a
fully accurate execution on top of a significance-agnostic
version of the runtime system, and (ii) an execution using
loop perforation [5], a simple yet usually effective com-
piler technique for approximation. Loop perforation is also
applied in three different degrees of aggressiveness. The
perforated version executes the same number of tasks as
those executed accurately by our approach.

We run our experiments on a system equipped with 2
Intel(R) Xeon(R) E5-2650 CPUs clocked at 2.00 GHz, with
64 GB shared memory. Each CPU consists of 8 cores (cores
support hyper-threading, but we deactivated this feature
in our experiments). We use Centos 6.5 Linux Operating
system with the 2.6.32 Linux kernel. Each execution pinned
16 threads on all 16 cores. The energy and power are
measured using likwid [6] to access the Running Average
Power Limit (RAPL) registers of the processors.

B. Experimental Results

Figure 1 depicts the results of our experiments. For each
benchmark we present execution time, energy consump-
tion and the corresponding error metric. As can be seen,
the approximated benchmark versions execute significantly
faster and with less energy consumption compared to the
accurate versions. Although output quality deteriorates as
the approximation level increases, this typically occurs in a
graceful way.

Overall, the two GTB policies exhibit similar perfor-
mance. Even though Max-Buffer GTB postpones task issue
until the creation of all tasks in the group, this does not seem
to penalize execution. The reason is that in most benchmarks
tasks are coarse-grained and organized in relatively small
groups, thereby minimizing the task creation overhead and
the latency for the creation of all tasks within a group.
LQH is typically faster and more energy-efficient than GTB,
except for Kmeans (this will be discussed in the sequel).

In Sobel the perforated version seems to significantly out-
perform our approach in terms of both energy consumption
and execution time. However this is done at the cost of
unacceptable output quality, even for the mild approximation
level. Our programming model and runtime policies achieve
graceful quality degradation, resulting to acceptable output
even with aggressive approximation.

DCT is friendly to approximations: it produces acceptable
results even if a large percentage of the computations is
dropped. Our policies, with the exception of Max-Buffer
GTB, perform comparably to loop perforation in terms of
performance and energy consumption, but produce result

of higher quality (note that PSNR is a logarithmic metric).
This is due to the fact that our model offers more flexibility
than perforation in defining the relative significance of code
regions in DCT. The problematic behavior of Max-Buffer
GTB is due to the fact that DCT creates many lightweight
tasks. Given that in this case task creation is a non-negligible
percentage of the total execution time, the latency between
task creation and task issue imposed by the policy results
to a notable overhead; especially in the case of aggressive
approximation, where the ultimate decision will be to drop
a large number of the created tasks anyway.

The approximate version of MC significantly outperforms
the accurate version, without a big penalty on output quality.
Randomized algorithms are inherently susceptible to ap-
proximations without requiring much sophistication. Thus
the performance of our approach is almost identical to that
of blind loop perforation. The LQH policy is faster and
consumes less energy than GTB. However, in the aggressive
and medium approximation degrees, LQH selects for ap-
proximate execution 4.6% and respectively 5.1% more tasks
than it should vs. the programmer-specified ratio, which in
turn affects output quality.

Kmeans behaves gracefully as the degree of approxi-
mation increases. Even in the aggressive case, all policies
demonstrate relative errors less than 0.45%. The GTB poli-
cies are superior in terms of execution time and energy
compared to the perforated version of the benchmark. LQH
performs notably worse. This is beceause our termination
criterion takes into account only object movements that have
been computed accurately, However, in LQH, task approx-
imation decisions are taken by each worker independently,
so the set of objects that is computed accurately can vary in
each iteration, which affects convergence.

Jacobi is a special case, in the sense that approximation
can affect its rate of convergence in a way that is determin-
istic but nevertheless hard to predict and analyze. The blind
perforation version requires fewer iterations to converge,
thus resulting to lower energy consumption than our policies.
Interestingly enough, it also results to a solution closer to
the real one, compared with the accurate execution.

Perforation could not be applied in Fluidanimate. If the
movement of some particles during a time-step is skipped,
the physics of the fluid are violated, leading to completely
wrong results. Moreover, to ensure stability it is necessary to
alternate between fully accurate and approximate time steps.
Our programming model allows to approximate the compu-
tation in a controlled way, by alternatively changing the ratio
at the taskbarrier between consecutive time steps, from 1.0
to a smaller value (so that tasks can run approximately).
Note that due to the sensitivity of Fluidanimate to errors,
aggressive approximation with LQH leads to unacceptably
bad results. However, at a medium degree of approximation,
LQH achieves good results at less than half the energy of
the accurate execution, with GTB being almost as efficient.
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Figure 1: Execution time, energy and quality of results for the benchmarks used in the experimental evaluation under different
runtime policies and degrees of approximation. In all cases lower is better. Quality is depicted as PSNR−1 for Sobel and
DCT, relative error (%) is used in all others benchmarks. The accurate execution and the approximate execution using
perforation are visualized as lines. Note that perforation was not applicable for Fluidanimate.



V. RELATED WORK

Green [7] is an API for loop-level and function approx-
imation. Loops are approximated with a reduction of the
loop trip count. Functions are approximated with multi-
versioning. The API includes calibration functions that build
application-specific QoS models for the outputs of the ap-
proximated code blocks, as well as re-calibration functions
for correcting unacceptable errors due to approximation.
Loop perforation [5] is a compiler technique that classifies
loop iterations into critical and non-critical ones. The latter
can be dropped, as long as the results are acceptable. In
our approach, such optimizations are driven by the relative
significance of code blocks, and are applied selectively at
runtime to meet user-defined quality criteria.

EnerJ [8] implements approximate data types and supports
user-defined “approximable” methods, without tying these
abstractions to a specific approximate execution model.
Similarly to our framework, EnerJ provides abstractions that
allow the programmer to provide hints on where approx-
imate execution can be safely used in a program and the
prototype version runs on a simulated environment. Contrary
to our framework, EnerJ does not use a runtime substrate for
approximation on general-purpose hardware and does not
consider code dropping or task-parallel execution.

Variability-aware OpenMP [9] is a set of OpenMP ex-
tensions that enable a programmer to specify blocks of
code that can be computed approximately. The programmer
may also specify error tolerance in terms of the number
of most significant bits in a variable which are guaranteed
to be correct. However, approximation applies only to FPU
operations, which execute on special FPUs with configurable
accuracy. Our framework applies selective approximation at
the granularity of tasks, using the significance abstraction,
thereby providing the flexibility to drop or approximate code
while preserving output quality. Furthermore, our framework
does not require specialized hardware support.

ApproxIt [10] is a framework for approximate iterative
methods, based on a lightweight quality control mechanism.
Unlike our task-based approach, ApproxIt uses coarse-grain
approximation at a minimum granularity of one solver itera-
tion. Schmoll et al. [11] present algorithmic and static anal-
ysis techniques to detect variables that must be computed
reliably and variables that can be computed approximately
in an H.264 video decoder. Although we follow a domain-
agnostic approach in our approximate computing framework,
we provide sufficient abstractions for implementing the
aforementioned application-specific approximation methods.

ERSA [12] is a multi-core architecture where cores are
either fully reliable or have relaxed reliability. The program
is divided into critical (typically control code) and non-
critical (typically data processing code) parts, which are
assigned to reliable or unreliable cores, respectively. Thus
ERSA uses an explicit and application-specific assignment

of code to cores with different levels of reliability. We follow
a different approach whereby the programmer uses signifi-
cance to implicitly indicate code that can be approximated,
and the runtime system implements selective approximation.
In our framework, accurate and approximate code may run
on any core for load balancing purposes.

VI. CONCLUSIONS

We introduced a programming model that supports ap-
proximate computing at the granularity of tasks, and devel-
oped corresponding runtime support for elastically deciding
which tasks to execute approximately or drop completely,
while meeting the specified quality/accuracy target.

In the future, we wish to explore more optimization sce-
narios, such as DFVS in conjunction with suitable runtime
policies for executing approximate (and more light-weight)
task versions on the slower but also less power-hungry
CPUs, as well as for using more such cores to make up for
this slower execution. We are also interested in extending
our programming model to support approximate computing
on top of ultra low-power but unreliable hardware.
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