
Clumsy Value Cache: An Approximate Memoization
Technique for Mobile GPU Fragment Shaders

Georgios Keramidas, Chrysa Kokkala, Iakovos Stamoulis

Think Silicon Ltd.

Patras, GR26500, Greece
Abstract—Redundancy lies at the heart of graphical
applications. However, as we demonstrate in this work harvesting
this high degree of redundancy is not an easy task. Our experimental
findings reveal that simply memoizing the outcomes of single
instructions or a set of instructions is not able to pay off due to the
high-precision calculations required in modern graphics APIs (e.g.,
OpenGL|ES 3.0). To this end, we propose clumsy value cache (VC), a
hardware memoization mechanism that is explicitly managed by
special machine-level instructions (part of the target GPU ISA). A
unique characteristic of VC is that it is able to perform partial
matches i.e., reducing the arithmetic precision (accuracy) of the
input parameters, thus increasing significantly the volume of
successful value reuses. To eliminate the error introduced by partial
matches and consequently the impact on the quality of the rendered
images, i) we systematically examine the precision tolerance of a
large set of instructions in modern OpenGL fragment shaders and ii)
we devise and optimize various run-time, feedback-directed policies
to control the interplay between accuracy and image quality
maximizing the value reuse benefits at the same time. The proposed
mechanism is evaluated in a cycle-accurate OpenGL simulator and
our results indicate that our approach reduces the number of
executed instructions by 13.5% with negligible (non-visible) impact
in the quality of the rendered images.

I. INTRODUCTION
Exploiting the property of redundancy in graphical

applications has attracted the attention of the architectural
community in the recent years. The Transaction Elimination
technique [2] compares consecutive framebuffer instances and
performs partial updates of entire frame tiles. Parallel Frame
Rendering processes multiple frames in parallel to overlap the
texture accesses [3] and avoid redundant computations [4] in
GPUs. Those works try to exploit inter-frame redundancy, they
require significant hardware support, they can be applied only in
GPUs with tile-based deferred rendering, and they reduce the
responsiveness of the system.

In this work, we outline our proposal namely Value Cache
(VC). VC is a variable precision memoization mechanism that
focuses on eliminating the intra-frame redundant arithmetic
calculations. In general, software or hardware memoization is a
widely studied technique. The idea is to store the results of
previous (costly) calculations in a dedicated storage area in order
to avoid re-calculations. Conceptually, this dedicated storage area
functions as a lookup table which internally maps between a set of
output results (i.e., the data itself) and a set of input parameters
(i.e., identifier(s) of the stored data). Once the data is stored in VC,
it may be accessed and retrieved while the step-by-step calculation
from the initial source input parameters is bypassed i.e., a number
of instructions may be eliminated; not executed.

However, while exploiting the concept of redundancy seems
promising, our experimental findings showcase that by simply
memoizing the outcomes of single instructions or a set of
instructions is not able to provide performance or power benefits.
This is mainly due to the limited opportunities of successful value
reuses (i.e., value cache hits) which eventually stem from the high-
precision calculations required by modern graphics APIs (e.g.,
OpenGL|ES 3.0).

To overcome this issue, we introduce the concept of
approximate value reuses. In particular, the proposed VC
mechanism is equipped with the ability of performing partial
matches i.e., reducing the arithmetic precision (accuracy) of the
input parameters. Obviously, this is an effective way to
significantly ameliorate the volume of VC hits. However, by
relying on partial matches, we may introduce errors in the
arithmetic calculations and eventually reduce the quality of the
rendered images or animations.

In the context of this work, we chose to apply our clumsy VC
memoization mechanism in the fragment shading operations of a
typical graphics processing pipeline. Fragment shaders typically
consist of complex arithmetic operations that may incorporate the
geometric and appearance descriptions of the rendered objects and
the environment. The target of the fragment programs is to
compute the final color value of a pixel. The key insight is that the
color values generated by the fragment shaders will be interpreted
by the human senses, which are not perfect, thus it is possible to
introduce small and controllable errors during the fragment
shading operations, if such an approach will result in power
savings.

The contributions of this work are as follows:
• We perform a classification of all fragment shaders' instructions

in order to characterize their potential for memorization and their
impact on the quality of the rendered images when we
deliberately ignore a few low order bits.

• We develop a methodology to automatically insert the VC
instructions in selected code regions (groups of instructions) of
the target fragment shaders.

• We statistically evaluate the effectiveness of our methodology
with respect to accuracy and image quality using profiling.

• We devise and optimize various run-time, feedback-directed
policies to control the interplay between accuracy and quality
maximizing the value reuse benefits at the same time.

II. OBSERVATIONS

In order to understand the potential of value reuses in
OpenGL applications, we perform an extensive analysis of various
fragment programs. In this section, we summarize the main
conclusions of our analysis with respect to redundancy and
accuracy.
 Value reuses are not equal between instructions. As a
first step, we evaluate the value reuse potential in a per-instruction
basis for various fragment shaders. Omitting at this point the
simulation details, Fig. 1 depicts our gathered statistics averaged
across all fragment programs/games. The vertical axis in the graph
shows the VC hits i.e., the percentage of the redundant operations
that are captured by our memoization mechanism. The x-axis
shows the studied instructions categorized as vector or scalar
instructions. For clarity reasons, the reported statistics correspond
to the averaged behavior of each instruction across all fragment
programs/games. There are two stacked bars attached to each
instruction depicting the percentages for an 8-entry and 32-entry
VC respectively. In all cases, the blue parts of the bars show the
measured statistics when only the concept of redundancy is
assumed (full 32-bits matches), while each additional bar segment
on top illustrates the extra benefits when 8, 16, and 20 bits are
ignored during the comparison between a new input and the VC
stored entries (the concept of accuracy is exploited).

As it can be seen from Fig. 1, the number of redundant
operations captured by VC differs significantly among the
instructions. If we concentrate only in the blue parts of the bars
(redundancy), the two-input vector instructions (MUL, ADD, and
SGE) exhibit a promising behavior. For example, more that 24%
hit ratio is reported by MUL and more than 50% by SGE (vector
greater or equal comparison). On the other hand, the three-input
vector instructions (MAD and DP3/vector dot-product), as
expected, show a poor value reuse potential (less than 1% hit ratio
in DP3). Exactly the same behavior appears in the power
consuming scalar instructions (EX2/exponential,
LG2/logarithmic, and RSQ/reciprocal square root). Thereby, it
becomes obvious that relying only on the concept of redundancy
results in diminishing benefits, invalidating the usage of a
memoization mechanism in graphics applications.

However, the situation changes radically when the concept of
accuracy is introduced. By forcing the VC mechanism to move
from full (32-bit) matches to partial matches during the VC
comparison process, a remarkable ramp up in the hit percentages
can be observed. As it is evident from Fig. 1, compared to full
matches (0-bits in the graph), the average additional increase in
VC hit ratios is 23.5% and 56.3% when 16-bits (green parts of the
bars) and 20-bits (purple parts) respectively are ignored in the VC
comparison process. On the contrary, by ignoring only 8-bits
produces meager extra benefits (the red parts of the bars are not
visible in the graph in most of the cases). The end result is that
aggressive reductions in the precision of the VC comparison
operations must be enforced in order to exploit the potential of
value reuses in graphics applications. Of course, the latter trend
will have a negative impact in the quality of the generated frames.
This impact is examined in the rest of this section. Note that
during the VC comparisons, we always keep the sign bit and the
full exponent of the corresponding 32-bit floating point numbers
and we reduce the bits of mantissa. For example, when we ignore

16-bits, mantissa is handled as a 7-bit vector (instead of 23-bits as
in the regular case).

Finally, as Fig. 1 also indicates, by comparing the left and the
right bar in every pair of bars, it is clear that increasing the size of
the value cache barely produces better results. This is a promising
result leading to the fact that a frugal value cache memory array is
required (the only exception is the TEX instruction which shows
an almost linear improvement in the reported hits when VC size
increases). The impact of VC size is further analyzed in the next
paragraph.
 Value reuse potential in code segments does not exist.

A straightforward way to increase the pay offs from the value
reuse mechanism is to increase the size of the reused blocks. By
doing this, a VC hit will be able to eliminate a larger number of
executed instructions. For example, if we assume that the VC
stores the inputs/outputs of a block consisting of five instructions,
then a single VC hit will skip the execution of five instructions
arising the achieved performance and power benefits from value
reuses. However, by increasing the size of reused blocks (called
VC blocks hereafter), we also increase the number of inputs and
outputs that must be stored in the VC storage area. This, in turn,
significantly lowers the possibility to experience a VC hit, since a
larger number of input arguments must be compared and matched.
Thus, in order to maximize the resulting benefits, we must find a
correct balance between the following contradictory trends: large
VC blocks increase the benefits reported by VC hits, but large VC
blocks lead also to smaller VC hit ratios. The latter trend can be
also seen in Fig. 2. The graph in this figure shows the VC hit ratios
(y-axis) for various VC block sizes (x-axis) assuming that only the
concept of redundancy is employed (32-bit matches). In all cases,
the statistics presented in Fig. 2 are averaged numbers across
various block sizes arbitrarily selected from the studied fragment
programs.

Each bar in Fig. 2 represents a different VC size starting from
a 32-entries VC (left bar) up to 32K-entries VC (right bar). In fact,
the 32K case corresponds to infinity since no changes have been
observed with larger VC sizes. As we can see from the graph, VC
block sizes larger than 2 instructions almost eliminate the potential
of value reuses even with unrealistic VC sizes. Hence, the only
viable way to increase the number of VC hits without resorting to
costly reuse hardware is to strongly rely in the output precision of
graphics applications (i.e., the concept of accuracy) which is the
subject of the next paragraph.
 Not all instructions in fragment shaders must be
equally precise. To understand the impact of changing the
precision in fragment shaders, we perform a set of experiments
varying the precision of the various operations of the studied
fragment shaders. More specifically, for each target instruction,
we statically reduce (before the execution) its precision in steps of
4-bits and we measure the impact in the quality of the rendered
images. Note that during those experiments our VC mechanism is
disabled. Our analysis reveals that the fragment shaders
instructions can be divided into two main categories: arithmetic
operations and texture fetches. Each category exhibits very
different sensitivities to precision reduction. Fig. 3 demonstrates
the errors appearing when the precision reduction is applied in all

the instructions of the target programs (image in the middle),
while the right icon depicts the case in which reduced precision is
forced only in the arithmetic calculations (texture fetches are still
done in full precision). In both cases, the reduction in precision is
performed by employing the half precision floating point format
(16-bits).

As we can see, when the reduced precision is applied only in
the arithmetic calculations, no perceptive differences in the
generated frame are introduced. In general (not shown in the
figure), arithmetic imprecisions manifest themselves in the
computation of color values in two ways: they gently darken the
scene as LSBs are dropped and smooth color gradients can appear
blocky as nearby values are quantized to the same result.

On the contrary, as the right bottom icon of Fig. 3 illustrates,
texture fetches are much more sensitive to variations in input
precisions. This was expected since texture coordinates are
effectively indices into an array. Using slightly incorrect indices to
index an array can lead to results that are very wrong, correct, or
anywhere in between. The behavior is dependent on parameters
such as the frequency of the texture data, size of the texture, and
type of the texture filtering algorithm. Reduced precision texture
coordinates will lead to neighboring pixels fetching the same
texel. In some pathological cases, texture coordinates for entire

Fig. 1. Potential of redundant operations for each instruction in the studied fragment shaders.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32

MUL ADD MAD DP3 SGE EX2 LG2 RSQ TEX

vector scalar

Va
lu
e
Ca

ch
e
Hi
ts
(%

)

0 bits 8 bits 16 bits 20 bits (ignored)

triangles may collapse to the same value when using a slightly
reduced precision, giving the triangle a single color. This effect is
visible in the ground floor in Fig. 3

Furthermore, Fig. 4 quantifies the impact of reduced precision
for the two instruction categories and for the four benchmarks that
we consider in this work. The y-axis shows the effect in the image
quality using the SSIM metric [5]. There are two groups of bars
attached in each game. The first group shows the impact in the
image quality when the precision reduction is forced in all the
pixel shader instructions, whereas the second group depicts the
same impact when only the arithmetic calculations are performed
with reduced precision. As we can see, the same behavior appears
in all cases. The precision of the arithmetic calculations can be
aggressively reduced (dropping up to 12 bits) without introducing
perceptive errors in the images (actually this can go up to 16-bits
in all cases except Prey_Guru_4). On the other side, only a 4-bit
precision reduction in texture fetches can be allowed. Further
reducing the precision of texture fetches will result in significant
and intolerable errors. Therefore, it becomes apparent that the
control over the precision of the two instruction groups (arithmetic
calculations and instruction fetches) must be done independently.

III. VC BLOCK SELECTION POLICY

Taking into account the above observations, we now present
our methodology to identify the code blocks (sets of instructions)
that are more suitable for reuse. In essence, the proposed

memoization mechanism is block based and it is controlled by
special machine-level instructions (part of the GPU ISA). In
general, the primary operations performed by VC are the
AddEntries and the LookupEntries instructions. AddEntries places
new results in the value cache and LookupEntries retrieves one or
more entries from the value cache, in case of a VC hit, or produces
misses if there is no corresponding entry for the sought input
parameters.

Our goal in this section is to devise an appropriate VC block
selection policy. In other words, given a fragment shader, our
methodology should output the suitable blocks of instructions for
value reuses. Those VC blocks will be annotated with the above
VC instructions i.e., the LookupEntries will be inserted at the start
of the selected VC block and the AddEntries at the end.

Our VC selection methodology is applied in the control/data
flow graph (CDFG) of the target fragment programs and its
operation is as follows:
• step 1: parse the target fragment shader in a top-down fashion.
• step 2: seek for code regions with no more than three input and

three output parameters (registers). The reasoning behind this
choice will be explained below.

• step 3: if a code block with no more than three input and three
output parameters is found, the code parsing is stopped. If the just
traversed block contains at least two instructions, the block is
selected for value reuse. The process continues starting from the
next instruction after the block.

Fig. 2. Potential from value reuses for various VC block sizes.

Fig. 3. Image in left is the reference frame produced by full-precision computations (32 bits) throughout the fragment shader. Image in the middle shows the result
of reducing the precision of texture coordinates to 16 bits. Image in right shows the result of reducing the precision of color computations to 16 bits. There are no

perceptive differences in the latter case.

Fig. 4. Impact of reduced precision.

50%

60%

70%

its
(%

)

20%

30%

40%

lu
e
Ca

ch
e
Hi

0%

10%

2 instr. block 3 instr. block 5 instr. block 7 instr. block

Va
l

i t ti bl k iinstructions per block size

32 128 256 512 1K 2K 4K 8K 16K 32K entries VC

0 8

0,9

1
Impact of Reduced Precision in Image Quality

0,6

0,7

0,8

SS
IM

0,5
All
Instr.

No
Text.

fetches

All
Instr.

No
Text.

fetches

All
Instr.

No
Text.

fetches

All
Instr.

No
Text.

fetches

All
Instr.

No
Text.

fetches

Quake_4 Doom_3 Prey_Guru_4 UT_2004 average

4 bits 8 bits 12 bits 16 bits 20 bits (ignored)

• step 4: if a TEX instruction is reached, the code parsing is
stopped. Again, if the just traversed block contains at least two
instructions, the block is selected for value reuse. The process
continues starting from the next instruction after the TEX
instruction.

• step 5: if an arithmetic instruction affects (calculates) a texture
address (i.e., a TEX instruction is dependent to this instruction),
the code parsing is also stopped. Again, if the just traversed block
contains at least two instructions, the block is selected for value
reuse. The process continues starting from the next instruction
after the block.

To further explain the proposed policy, an example code is
illustrated in Fig. 5. As indicated by the blue boxes in the code, our
policy manages to find three VC blocks consisting of 7, 5, and 2
instructions respectively.

The proposed VC block selection process is straightforward
and it can be easily incorporated in the back-end of a typical
compiler. As part of this work, this methodology has been
integrated in the Attila simulator [1] as an extra trace parser and
the Attila ISA has been appropriately extended to include the new
VC instructions.

A key point of our selection policy is the maximum number
of input and output instructions that are allowed in each VC block.
Of course, blocks with less than three input/output registers can
still be eligible VC blocks. First, if we limit the number of
inputs/outputs we will end up with small VC blocks diminishing
the performance and power gains of value reuses (for the same
reason 1-instruction blocks are not candidates for VC blocks). In
contrast, if we increase the allowed input/output registers, then i)
the number of VC hits will be significantly reduced (as shown in
the previous section), and ii) VC hardware will become
unacceptably costly. We experimentally found that the three
inputs/three outputs policy strives the best balance between the

two contradictory trends. In addition, modern mobile GPUs
already contain hardware support for reading three registers
simultaneously due to the existence of instructions like MAD.

Finally, the effectiveness, in terms of code coverage, of the
proposed VC block selection policy can be seen in the array
presented in Fig. 6. Code coverage is defined as the percentage of
instructions that are assigned to VC blocks normalized to the total
number of instructions. As Fig. 6 illustrates the code coverage
ranges from 53% (Prey_Guru_4/frame_10) to 73%
(UT_2004/frame_200), while the averaged coverage across all the
studied games/frames is 58.7%.

IV. VC PRACTICAL IMPLEMENTATION

The proposed memoization mechanism is implemented as a
new functional unit (called Value Cache Functional Unit or
VCFU) that is controlled by special machine-level instructions
(part of the GPU ISA). As mentioned, each selected VC block will
be surrounded by two assembly-level instructions namely the
AddEntries and the LookupEntries instructions. Assuming a VC
block consisting of N instructions, a VC hit means that only the
LookupEntries instruction is executed; the VC block is skipped.
The end result is that the number of the executed instructions is
reduced by N-1 when a VC hit occurs. On the contrary, in a VC
miss, the number of executed instructions is increased by 2 (N+2).
Therefore, if not enough VC hit rate is achieved or code blocks are
small, the VC mechanism can obtain negative returns. In
Section VI and Section VII, we present our approach to increase
the VC hit ratio by controlling, in a static or dynamic way, the
precision of the VC inputs.

V. SIMULATION INFRASTRUCTURE

As noted, the proposed mechanism is applied in the OpenGL
fragment shaders and it is evaluated using four OpenGL games
(Doom 3, Quake 4, Unreal Tournament 2004, and Prey Guru 4).

Fig. 5. VC Block selection policy (notations: r: register file, i: input register file, o: output register file, c: constant register file, t: texture unit).

Fig. 6. Code coverage of the proposed VC block selection policy.

The evaluation is performed in the Attila simulator [1]. Attila is a
architectural-level, cycle accurate simulator capable to work at the
OpenGL level.

VI. PROFILING RESULTS: VALUE REUSE BENEFITS VS QOS
As noted in the previous section, the VC approach introduces

more instructions in the target fragment programs. As a result, the
usage of VC may obtain negative returns by increasing the number
of executing instructions if not enough VC hit ratio is reported. In
order to increase the VC hit ratio, we enforce an aggressive
reduction in the precision of the VC lookup operations. This
reduction is performed by ignoring a controlled number of bits
during the comparison between a new VC input and the VC stored
entries (i.e., the concept of accuracy is exploited). Our effort in
this section is to study the relation between the quality of output
frames and VC performance when the reduction in the precision is
performed in a static manner. Fig. 7 presents the results of this
analysis.

Fig. 7 (top graph) shows the measured VC hit ratio as
averaged values over all VC blocks of all studied fragment
programs/games. The graph in the middle depicts the numbers of
instructions saved by our proposal i.e., the percentage of the
executed instructions when the value cache is activated
normalized to the initial number of instructions. In addition, the
bottom graph of Fig. 7 illustrates the losses in image quality
reported in each case. In all figures, the horizontal axis contains
five groups of bars. The four leftmost groups correspond to the
four studied OpenGL games. The rightmost group of bars (tagged
as "low_complexity") is a collection of frames with poor graphics
contents e.g., game menus, simple animations etc. The frames
comprising the latter category have been arbitrarily selected from
the four OpenGL games. Finally, there are eight bars in each group
corresponding to different precisions. The leftmost bar tagged as
"0-bits" show the results when only the concept of redundancy is
exploited (full 32-bits VC matches). Every bar in the right side of
"0-bits" bars corresponds to a different precision starting from the
case in which 4-bits are ignored during the VC comparison
process. The number of ignored bits ranges from 4 bits up to 24-
bits. In the latter case, the mantissa part of the floating point
numbers is actually not involved in the VC comparison operations.
Note that in all cases, the same number of ignored bits is applied in
all the selected VC blocks.

Several interesting conclusions can be drawn from the graphs
presented in Fig. 7. First, if we concentrate on the "0-bits" bars, it
is evident that a memoization mechanism, that cannot take
advantage of the tolerance in graphics applications, fails to
produce value reuse benefits. The value cache hit ratios range
from 21.6% in UT2004 to 61.4% in the "low_complexity"
category (36.8% on average). In essence, this number represents
the percentage of the redundant operations in the under evaluation
fragment shaders. However, the graph in the middle shows that
even if our memoization technique is able to capture those
redundant operations, the end result is that the number of the
executed instructions is actually increased in all studied games.
The only exception is the "low_complexity" category in which
12.3% less executed instructions are observed. As a result, it is
evident that the only viable way to experience benefits from value
reuses is to aggressively reduce the precision of the input data.

The negative returns from memoization continue up to the
"16-bits" case. If we further reduce the precision, the value cache
mechanism starts to pay off. The "20-bits" case is actually an
inflection point above which the savings in the number of the
executed instructions start to appear. More specifically, the saved
instructions in the "20-bits" case are 8.5% (on average). In fact,
the "20-bits" case is an appealing design point not only due to the
instruction savings, but also due to the fact that non-noticeable
errors are introduced in the output frames (the losses in the image
quality are well below 0.8% in all cases). Furthermore, if a more
aggressive reduction in precision is applied, the percentage of the
saved instructions remarkably ameliorates, but the image quality
decreases to unacceptable levels. However, this trend is not
uniform across all benchmarks. For example, in the "22-bit" case,

the instruction savings are 20.7% in Doom3 and 44% in UT2004,
while in both games the image losses are below 6%.
Consequently, this can be a suitable design point. On the other
hand, as it was expected, the "low_complexity" frames exhibit a
great tolerance in precision (see SSIM graph) even if the precision
is reduced by 24-bits.

VII. DYNAMIC VALUE CACHE MECHANISM

The main drawback of a VC mechanism with a statically
defined precision is its strong reliance on application profiling and
the inability of the technique to adapt to the variability of the
graphics contents being used as inputs. To address that, we
introduce a hardware-level dynamic technique (called Dynamic
Value Cache or DVC) to choose the optimal VC operating
precision. At the highest level, DVC is a closed-loop method by
which the resulting errors can be monitored as VC precision is
reduced at run-time. When a predefined number of errors occurs,
the precision of VC is increased to avoid continued errors. In the
rest of this section, we briefly describe the proposed closed loop
mechanism, we experimentally define the control parameters of
the feedback algorithm, and we present the overall reuse benefits
achieved by DVC.
 Design parameters of the feedback mechanism. The
design parameters of the proposed close loop method are: the
sense interval, the sampling period, the error threshold, and the
number of allowed errors. To monitor VC performance, the
execution time is divided into fixed length intervals, called sense
intervals. In our setup, the sense intervals are measured in terms of
executed fragment program instances. For example, if the sense
interval is set to 2500, every 2500 executed fragment programs a
new selection in the precision of the VC operations will be
performed.

The remaining three parameters are used to account for the
number of errors occurred during a sense interval. The allowed
errors are determined by an experimentally defined threshold.
However, a critical question is how to measure the errors
introduced by the reduced precision VC operations. To do this, the
hardware must compute for the same inputs both the result
produced by a successful VC lookup (VC hit) as well as the result
of the normal fragment program execution (the latter is
implemented by enforcing the VC to produce misses based on a

Fig. 7. VC hit ratio (top), percentage of saved executed instructions (middle),
and impact in image quality (bottom) for the static policy for various precision

levels.

70%
80%
90%
100%

ts
(%

)

40%
50%
60%
70%

ue
Ca

ch
e
Hi
t

0%
10%
20%
30%

Va
lu

Quake4 Doom3 Prey UT2004 low_complexity

0 bits 4 bits 8 bits 12 bits 16 bits 20 bits 22 bits 24 bits ignored

40%
50%
60%
70%

(%
)

10%
20%
30%
40%

ct
io
ns

Sa
ve
d

30%
20%
10%
0%

In
st
ru
c

Quake4 Doom3 Prey UT2004 low_complexity

0 bits 4 bits 8 bits 12 bits 16 bits 20 bits 22 bits 24 bits ignored

0,9

1

0,8

SS
IM

0,6

0,7

,
Quake4 Doom3 Prey UT2004 low_complexity

0 bits 4 bits 8 bits 12 bits 16 bits 20 bits 22 bits 24 bits ignored

VC visible flag bit). The two results are compared (using a simple
32-bit subtraction) and if the result of the comparison is larger than
a preset threshold (error threshold), an error is reported. This
process is enabled by the fact that every fragment program has a
single output point i.e., the end result of each fragment program is
always assigned to a single register.

An obvious shortcoming of this dual-mode execution is its
large overheads. To overcome this, we investigate various
sampling techniques. We explore different sampling rates and
sampling patterns. Our results reveal a very promising
characteristic: by sparsely sampling every n-th generated fragment
program outputs performs nearly as well as denser random
sampling. In the rest of this section, we statically set the sampling
period to 100 meaning that one every 100 fragment program
outputs is selected for error monitoring. In addition, we assume
that the API driver is equipped with extra control logic to
implement this dual-mode execution. The overheads (extra
instructions) of the dual-mode executions are taken into account in
our experimental results.
 Adaptation strategy. Apart from the error monitoring logic,
we must also determine how to change the operating precision.
Towards this direction, we examine two main strategies. The first
strategy, called lock/unlock strategy, is related to the learning
phase of our adaptation policy. Starting from the highest possible
precision (full precision), the lock strategy continuously reduces
the precision of the VC operations in every sense interval, if the
feedback module indicates that the sought errors (if any) are below
the predefined thresholds. This process is finished when the errors
are above the tolerance thresholds. At this point, the precision is
increased by one and it is locked in this new value. After this
learning phase, the closed loop mechanism is disabled until the
end of the current frame and the remaining VC operations are
executed with the new precision. On the other hand, in the unlock
strategy, there is no learning phase. The close loop module
continuously monitors the resulting errors and the VC precision is
increased/decreased by one unit (one bit) in each sense interval
depending on the outcome of the feedback module. Obviously, the
unlock mechanism requires a more tight control over the generated
errors.

The second strategy, called local or global strategy, aims to
define if the precision control will be applied in a per-fragment
program basis (called local) or globally among the fragment
programs (all the VC operations of all the fragments will be
enforced to dictate to the same precision level). An obvious
benefit of the per-fragment precision control is that the selected
precision will be tailed to the special characteristics of each
fragment program. On the other hand, longer learning phases are
required if the locking strategy is employed (a learn phase for each
fragment program). In addition, the per-fragment program
precision control requires an extra table to store the last operating
precision of each program. However, this is not considered as an
important drawback, since the number of the simultaneously
running fragment programs is limited (typically below five in our
setup).
 Fine tuning the feedback mechanism. In order to fine tune
the feedback mechanism, we perform a series of experiments

varying the length of the sense interval, the error threshold, and the
number of allowed errors. Obviously, the selection of the
configuration must be done as a compromise between the VC
performance and the image quality degradation. In particular, we
use the following criterion in both strategies: we opt the
configuration that exhibits the highest VC hit ratio without
reducing the image quality by more than 2% i.e., the output errors
are below noticeable levels. Due to lack of space, the results of this
analysis are omitted.
 Evaluation of various dynamic policies. Based on the
parameters extracted by our fine turing step, we devise and
evaluate three different policies to control the operating precision
of the dynamic value cache mechanism. Those policies are: i)
Policy 1: lock strategy and local strategy, ii) Policy 2: unlock
strategy and local strategy, and iii) Policy 3: unlock strategy and
global strategy.

The left graph in Fig. 8 shows the number of saved
instructions achieved by each policy, while the right graph depicts
the impact in the image quality reported by each technique. In both
graphs, the statistics are presented in a per game basis (averaged
among all fragment programs in each game). As Fig. 8 indicates,
policy 3 is the best performing policy achieving a reduction in the
number of executed instructions of 15.1%, 6%, 24.3%, and 8.7%
in Quake_4, Doom_3, Prey_Guru_4, and UT_2004 respectively.
The average instruction savings are 13.5%. The other two policies
offer diminishing or even negatives returns from value reuse.
Moreover, policy 3 manages not only to reduce the number of
executed instructions, but to do so with a negligible impact in
image quality (well below 2% in each game and 0.8% on average).

VIII. CONCLUSIONS
In this work, we present the Value Cache mechanism. VC

targets to remove the redundant, complex arithmetic operations in
OpenGL graphics applications. Our results show that by
employing a typical hardware mechanism to exploit the redundant
operations leads to meager benefits even if impractically large
memoization tables are used. To overcome this issue, we heavily
rely on the concept of reducing the accuracy of the value
memoization comparisons in a dynamic fashion. Overall, our
approach manages to reduce the number of executing instructions
in modern fragment shaders by 13.5% with a negligible loss in the
quality of the rendered images.

REFERENCES

[1] Attila framework: http://attila.ac.upc.edu/
[2] ARM, Transaction elimination. Available:

http://www.arm.com/products/multimedia/mali-technologies/transaction-
elimination.php

[3] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Parallel frame rendering:
Trading responsiveness for energy on a mobile gpu. Proc. of Intl.
Conference on Parallel Architectures and Compilation Techniques, 2013.

[4] J-M. Arnau, J-M. Parcerisa, and P. Xekalakis. Eliminating redundant
fragment shader executions on a mobile GPU via hardware memoization.
Proc. of Intl. Symposium on Computer Architecture, 2014.

[5] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 2004.

Fig. 8. Average instruction savings (left) and average impact in image quality (right) for the three dynamic policies.

0%
5%
10%
15%
20%
25%
30%

tr
uc
tio

ns
(%

)

Reduction in Executed Instructions

13,5%
8,67%

24,33%

5,96%

15,05%

20%
15%
10%
5%
0%

Sa
ve
d
In
st

Dynamic Policy 1 Dynamic Policy 2 Dynamic Policy 3Dynamic Policy 1 Dynamic Policy 2 Dynamic Policy 3

0,983

0,993
0,991

0 97

0,98

0,99

1

SI
M

Reduction in Image Qualiy

0,95

0,96

0,97S

Dynamic Policy 1 Dynamic Policy 2 Dynamic Policy 3Dynamic Policy 1 Dynamic Policy 2 Dynamic Policy 3

