
Fast, Approximate Error Prediction for Unreliable
Embedded Processors

Zheng Wang∗, Saumitra Chafekar∗, Hui Xie∗, Anupam Chattopadhyay†
∗UMIC Research Centre, RWTH Aachen University, Aachen, Germany

wang@umic.rwth-aachen.de
†Nanyang Technological University, Singapore

anupam@ntu.edu.sg

Abstract—Reliability has emerged as an important design crite-
rion due to shrinking device dimensions. To address this chal-
lenge, researchers have proposed techniques compromising the
Quality-of-Service (QoS) across all design abstractions. Performing
reliability-QoS trade-off from a high-level design abstraction is a
major challenge. In this paper, we propose an analytical reliability
evaluation framework, based on probabilistic error masking matri-
ces (PeMMs). The reliability evaluation is performed by propagat-
ing erroneous tokens through an abstract circuit model. We report
detailed experiments using a RISC processor and several embedded
applications. The proposed approach demonstrates significantly
faster reliability evaluation compared to pure simulation-driven
approach.

Keywords-Fault Propagation Analysis; Error Prediction; Ap-
proximate Computation

I. INTRODUCTION

With reduced transistor size in deep sub-micron CMOS tech-
nology, the performance and power density of processor have
increased dramatically. High power density on the semiconduc-
tor chips increases failure rate and consequently reduces device
lifetime as well as causes soft errors [1]. Furthermore, soft errors
are caused by external radiations which are increasingly reported
even at ground level [2]. These trends forced digital designers
to treat reliability as a serious design concern.

Two major categories of faults, namely transient and perma-
nent faults, lead to unreliability of a design [3]. Transient faults
manifest into soft errors which temporarily corrupt the data
or the output of a combinational circuit. On the other hand,
permanent faults lead to permanent damage of the circuit and
manifest as hard errors. Permanent faults are caused by extrinsic
sources to the design such as manufacturing defects, process
variation or intrinsic sources, which are caused by wearing out
of the design material.

A. Reliability Estimation Techniques
The impact of faults can be investigated through simulation.

While faults can be simulated accurately only at the circuit
level of abstraction, many proposals exist to inject the fault
at high level of abstraction for early reliability exploration.
Pure software fault injection techniques alter the processor
state (memory, register) to simulate a fault, however, it suf-
fers from a restricted view of the micro-architecture. Register-
Transfer Level (RTL) and gate-level fault injection approaches
[4] simulate the hardware behavior with more accuracy and
therefore, are usually slow and in some cases need repeated
compilation. In order to hit a balance, fault injection can be
performed during instruction-set simulation (ISS) [5], which
offers different degrees of accuracy and speed trade-off. Cho [6]
presents a quantitative evaluation on the accuracy of different
fault injection techniques by tracking error propagation using

FPGA-based emulation system, where the inaccuracy analysis
is conducted through exhaustive fault injection experiments.

In contrast to the simulation techniques, analytical methods
have also been proposed to investigate fault tolerant behavior of
circuits. Mukherjee et al. [7] introduced the concept of archi-
tecturally correct execution (ACE) to compute the vulnerability
factors of faulty architecture components. In [8], ACE analysis
is performed to compute architectural vulnerability factors for
cache and buffers. Reliability-aware software transformations
are proposed by Rehman et al. [9], [10] to use the ACE
for instruction vulnerability analysis. The vulnerability of the
instruction is analyzed by investigating the constituent logic
blocks. While the instruction vulnerability index model proposed
in [9] includes the logical masking effects, the details of
derivation of the masking effect are not mentioned. Generally,
analytical methods suffer from estimation accuracy.

B. Importance of Error Prediction
With reliability evaluation techniques, design of reliable

system in presence of faults, is still a challenging problem.
Designing a reliable processor requires thorough understanding
of all the causes of failures such as external radiation, elec-
tromigration and thermal cycles. Furthermore, reliability brings
forth trade-off with other design dimensions [11], [12], [13],
[14]. In recent research reliability is treated as a cross-layer
design issue [15]. This stresses the fact that separate error
mitigation techniques from individual design abstractions may
result in an over-protected system. The design should take the
support of architectural and algorithmic error resilience [16],
[17]. However, this requires strong understanding of the fault
propagation through different design abstractions, based on
which resultant error properties such as location, timing and
probabilities could be predicted. Such knowledge are difficult
to acquire through analytical or fault injection techniques [6].

In particular approximate error prediction is an issue when
algorithmic reliability is explored or when inexact, probabilistic
computing [18] is performed. Similar research was pursued
earlier for floating-to-fix point conversion in DSP design [19].
However, there the error localities were restricted to variables
(sizes of fixed points) and operators (saturation, rounding ef-
fects) without any architecture-level concern. Krishnaswamy et
al. proposed a framework called Probabilistic Transfer Matrix
(PTM) [20] which captures the probabilistic behavior of the
circuit while estimates the approximate error probability of
faults inside the circuit. Analytical study of error propagation
could be potentially addressed using PTM. However, PTM
suffers from scalability problem for large design due to its bit-
level accuracy and is not initially designed for handling error
masking effects.



C. Contribution
We first develop the concept of a new algebraic representation

named Probabilistic error Masking Matrix (PeMM) to investi-
gate the masking effects on errors occurring at the inputs of the
circuits. Compared with PTM, PeMM has a reduced calculation
complexity due to the scope of error focusing on coarse-grained
signal level. Next we integrate PeMM algebra into a high-level
processor design framework and represent logic error as an
abstract data structure named token. In this paper, we focus on
soft error occurring at registers and memories, which are more
susceptible to transient fault than combinational logic circuits
[21]. An automated analysis flow is presented where the token
propagation can be predicted using cycle-accurate instruction-set
simulator while the error masking effects are carefully addressed
using PeMM for individual micro-architecture unit. Fine-grained
PeMM is also proposed which calculates nibble-wise or byte-
wise error probabilities on data signals. Consequently, the sig-
nificance of logic faults through design abstractions could be
approximately predicted in earlier design phases.

The rest of the paper is organized as following. Section II
illustrates the PeMM algebra in details. Section III introduces
the approximate error prediction framework in a high-level
processor design environment. Section IV shows the usability
of proposed framework using several embedded applications on
a RISC processor. The paper is concluded and future work is
outlined in section V.

II. PROBABILISTIC ERROR MASKING MATRIX

Faults within logic circuits are masked with certain probabil-
ity before propagating to the circuits’ outputs as visible errors.
Such masking effects are seen due to several reasons as:

• Logic primitives performing algorithmic calculations have
inherent ability of masking faults at inputs, which give
error-free outputs.

• Micro-architecture features such as inter-stage data bypass
can neglect the faulty input by replacing it with fault free
input as a feedback from other pipeline stages.

• Faulty resources of processor such as registers and memory
elements can never be read by computational circuit, giving
always a fault free output.

• The faulty value of storage element or wires are overwritten
before being read.

PTM [20] calculates the error probability of circuits’ output
by considering the logic circuits as a white box with faults inside
logic gates. The approach suffers from scalability problem for
large circuits since the size of the PTM is 2n × 2m where n
and m imply the total number of bits for inputs and outputs.
Besides, for large scale circuits the derivation of PTM can be
extremely time consuming since PTMs of individual logic gates
needs to be accumulated.

We introduce Probabilistic error Masking Matrix (PeMM) to
address the scalability issue, where the faults reside in inputs of
circuits only. In contrast to PTM, PeMM has the size of m×n
for a circuit with n bits input and m bits output. The size of
matrix can be further reduced depending on the level of error
existence. For instance, n and m represent number of input and
output signals when signal level error existence is considered.

A. PeMM Definition
Consider a circuit with n inputs and m outputs. We label the

n inputs as in0, ...inn−1 and the m outputs as out0, ...outm−1.

The PeMM P of the circuit is a matrix with dimension m× n.
Each entry in P (outi, inj) represents error masking probability
Mouti

inj
, where i ∈ [0,m − 1] and j ∈ [0, n − 1]. It shows the

error masking effect on output outi with regard to input inj ,
where 0 means the error has been completely masked while 1
implies no masking effect at all. Note that eouti ∈ [0, 1] so that
value larger than 1 will be truncated. The inputs of the circuits
are represented by a column vector I with dimension n × 1.
Entry in I(j) represents the error probability einj associated
with input inj . When the input vector is left multiplied with
P , resultant output vector is represented by a column vector O
with dimension m× 1, whose entry shows the error probability
eouti associated with output of circuits. Figure 1 visualizes the
abstract circuit model with its PeMM.

Fig. 1. Probabilistic error Masking Matrix (PeMM)

Besides the entire circuit, PeMMs can also represent error
masking effects of individual micro-architecture units. Such
divide and conquer approach considers the circuit PeMM as
the concatenation of PeMMs for architecture units. Figure 2
shows the architecture units for executing the ALU instructions
and data signals between logic operations. The dimensions of
selected PeMMs are shown based on the counts of input and
output signals. In case that input faults are not completely
masked, the unit outputs errors with certain probability.

ALU_DC

Fetch

Decode

ALU_EX

Writeback

FE stage

DC stage

EX stage

WB stage

1. insn

4. src1,src2

3. opcode,

mode

5. op1, op2, op3

2. dst

6. WBV
8. Inter stage data bypass 

Reg 

File

Prog 

Mem

Error with probability

PeMM (2x3)

PeMM (1x3)

PeMM (3x2)

Fig. 2. Logic Blocks Involved for ALU Instruction

B. PeMM for Processor Building Blocks

1) Combinational Logic Blocks: PeMM performs a transfor-
mation of error masking probability from logic inputs to outputs
for linear circuits. However, such approach is not applicable for
logic blocks with internal data dependencies. To address such
issue, larger circuits are decomposed into logic sub-blocks with
individual PeMMs. Figure 3 indicates PeMM decomposition
based on data dependencies, where the large logic block alu ex
is split into 3 sub-blocks. Signals alu in1 and alu in2 connect



first two sub-blocks while alu out connects the last two sub-
blocks. PeMMs for sub-blocks are characterized individually.
The intra-token pool is used to keep the temporary tokens with
error probabilities for processing by following logic sub-blocks.

M00M01

M10M11

EX_MEM_WBV

EX_MEM_BPR

=

alu_out

dst

PeMM of	alu_ex_3

M00 M01 M02
alu_out =

alu_in1

alu_in2

opcode

PeMM of	alu_ex_2

EX_MEM_BPR

DC_EX_rs1

EX_MEM_WBV

MEM_WB_BPR

MEM_WB_WBV

DC_EX_op1

DC_EX_op2

M00 M01 M02 M03 M04 M05 M06

M10 M11 M12 M13 M14 M15 M16

alu_in1

alu_in2
=

PeMM of	alu_ex_1

PeMM of	alu_ex

Intra token pool

EX_MEM_BPR

DC_EX_rs1

EX_MEM_WBV

MEM_WB_BPR

MEM_WB_WBV

DC_EX_op1

EC_EX_op2

alu_ex_1
alu_ex_2

alu_ex_3

opcode

dst

alu_in1

EX_MEM_WBV

alu_in2

alu_out

EX_MEM_BPR

alu_ex

Fig. 3. Decomposition of Large Logic Block Using PeMM

2) Control Flow inside Logic Block: The other factor con-
tributes to the inaccuracy of PeMM estimation is the dynamic
control flow within logic blocks. The run-time circuits masking
capability shows significant difference compared with purely
random characterization. This can be seen from the behavioral
description of circuits shown in Figure 4, where a 3-to-1
multiplexer is generated during logic synthesis for the if/else
statements. During execution, various active path shows different
PeMM for the same logic block which leads to exclusive
elements in PeMM. Random characterization results in a PeMM
elements of [0.33 0.33 0.33] indicating error probability on
each path is statically masked to 33%. To increase accuracy,
additional helper signal is adopted to indicate selected branch
dynamically and fill the corresponding elements in PeMM. In
Figure 4, vector [1 0 0] is filled into PeMM when the first
branch of if statement is selected. Such approach reviews trade-
off between accuracy of characterization and modeling efforts.

3) Sequential Logic and Memory: Other than combinational
logic, sequential logic and memory exhibit no internal error
masking effects on their inputs. Such elements have equal num-
ber of inputs and outputs whose PeMM can be modeled using
identity Matrix Im×m, where m is the number of inputs and
outputs. For pipeline registers, errors on input ports are mapped
consistently to corresponding output ports during pipeline shift.
For registerfiles, input errors are stored for write access while
same errors are loaded during read access. Similarly, PeMM
for memory is modeled as identity matrix with m equaling to
the number of storage cells inside the memory. PeMM does
not model error occurring inside sequential logic, which can be
alternatively addressed using PTM [20].

4) Inputs with Multiple Faults: Multiple faults on the inputs
of the circuit also affects PeMM characteristics. Matrix multipli-
cation sums up the contribution of each input error after individ-
ual masking effects, which achieves good masking accuracy for
non-algorithmic operations. For algorithmic operations multiple
input faults can strongly vary the values of Mouti

inj
compared with

fault on single input, especially in the case of correlated faults

BEHAVIOR

{

if	(BYPASS_ACTIVE(MEM.IN.BPR,	IN. rs1))

{

alu_in1	=	MEM.IN.WBV;

helper_signal =	1;

}

else

{

if	(BYPASS_ACTIVE(WB.IN.BPR.	IN.rs1))

{

alu_in1	=	WB.IN.WBV;

helper_signal =	2;

}

else

{

alu_in1	=	IN.op1;

helper_signal =	3;

}

}

alu_in2	=	IN.op2;

}

helper_signal MEM.IN.WBV WB.IN.WBV IN.op1

1 1 0 0

2 0 1 0

3 0 0 1

PeMM	LUT	w.r.t.	value	of	helper	signal

M00	 M01	 1 M03	 0 0 M06

M10	 M11	 M12	 M13	 M14	 M15	 M16

EX_MEM_BPR

DC_EX_rs1

EX_MEM_WBV

MEM_WB_BPR

MEM_WB_WBV

DC_EX_op1

DC_EX_op2

alu_in1

alu_in2

=

M02 =	PeMM(alu_in1,	EX_MEM_WBV,	helper_signal=1)

M04 =	PeMM(alu_in1,	MEM_WB_WBV,	helper_signal=1)

M05 =	PeMM(alu_in1,	DC_EX_op1,	helper_signal=1)

Dynamical	update	of	PeMM	values

Behavioral	description	of	logic	block

Fig. 4. Control Flow Handling for PeMM

which are completely or partially originated from the same fault.
Correlated faults are possible to inversely affect each other and
even cancel the resultant errors depending on the algorithmic
operation, such as in the case of XOR operator with bit-flip
faults on both inputs.

C. PeMM Characterization
We characterize PeMM elements through high-level behav-

ioral simulation where primary inputs of logic blocks are subject
to fault injection. For a specific circuit with random data inputs,
the masking probability Mouti

inj
can be acquired by averaging

the error probability on outi among multiple experiments, where
single bit-flip fault is injected onto input inj in each experiment.

1) Accuracy of PeMM Characterization: The characteriza-
tion testbench compares the fault-free (golden) simulation re-
sults with fault injection on the specific inputs. To characterize
each element in PeMM with a required confidence level and
confidence interval, the number of experiments is determined by
all the possibilities of bit flips in given input space (population)
according to [22]. For a circuit with n inputs of m bits each,
the size of input space is 2m×n, the overall size of possible
experiments equals 2m×n ×m with the possibilities of random
bit-flip in a given input space. For instance, a circuit with 2
inputs, each 32 bits wide, requires 9604 experiments to achieve
95% confidence level with confidence interval of 1.

2) Fine-grained PeMM: As stated previously, granularity of
PeMM varies depending on the level of error existence. When
the input vectors represent signal-level error probabilities, non-
zero values in output vectors indicate the existence of errors
in particular signals. An instinctive extension to the approach
would be the focus of error existence in smaller granularity
such as byte or nibble level, where PeMM predicts not only
signal-level error existence but also in which byte/nibble the
error exists. This could be of particular importance in the field
of approximate application, where the achieved QoS could be
traded off with other design metrics such as power consumption
and area overhead.

Fine-grained PeMM can be created using additional look-
up-table for values of Mouti

inj
as in Table I. The first column

represents the targeted operations while the second column
forms a Key variable showing in which bytes the faults locate
for both inputs of logic primitives. For instance, key 13 shows



faults in 1st byte of first input and 3rd byte of second input while
key 10 shows no fault in second input but only 1st byte of the
first input. The byte-wise Mouti

inj
shows the probabilities of error

existence in particular output bytes. Depending on targeted field
of application, granularity can be further fine-grained, which
requires additional efforts for characterization.

Operation Key Byte-wise M
outi
inj

SUB 10 1.000000 0.126830 0.000520 0.000000
OR 22 0.000000 0.721690 0.000000 0.000000

AND 10 0.499030 0.000000 0.000000 0.000000
AND 13 0.500400 0.000000 0.499900 0.000000
XOR 33 0.000000 0.000000 0.873990 0.000000

TABLE I
EXAMPLES OF FAULT APPROXIMATION WITH BYTE-LEVEL GRANULARITY

III. APPROXIMATE ERROR PREDICTION FRAMEWORK

The approximate error prediction framework is proposed
using PeMMs for individual logic blocks. In this work it is
integrated with LISA-based processor design flow [23] while
the approach is generic for any architecture simulator such as
Verilog and SystemC simulators. Figure 5 shows an overview
of the framework.

LISA 

Models

LISA 

Models

UserUser

LISA 

Compiler

LISA 

Compiler

Abstract Circuit 

Model

Abstract Circuit 

Model

AppApp

ISS with fault 

injection

ISS with fault 

injection

Architecture PeMM 

Characterization

Architecture PeMM 

Characterization

P
re

p
a

ra
to

ry
 S

ta
g

e
P

re
p

a
ra

to
ry

 S
ta

g
e

E
x
e

cu
ti

o
n

 S
ta

g
e

E
x
e

cu
ti

o
n

 S
ta

g
e

Token 

generator

Token 

generator

Predicted errorsPredicted errors

Instr. set 

simulator

Instr. set 

simulator

Fine-grained 

PeMM

Data Base

Fine-grained 

PeMM

Data Base

Cycle accurate 

error tracker 

Cycle accurate 

error tracker 

LISA

Code Parser

LISA

Code Parser

PeMM

lookup

PeMM

lookup

To
k
e

n
s

LEGEND

New 

Module

New 

Module

Existing

Module

Existing

Module

Fig. 5. Error Tracking and Prediction Framework

The flow consists of the preparatory and execution stage. In
preparatory stage, cycle accurate instruction-set simulator (ISS)
running specific applications is first generated from processor
description using ADL LISA [24]. With the simulator extension,
ISS is prone to fault injection where user can configure fault
information using graphical interfaces. An extra LISA code
parser is used to translate LISA description into abstract circuit
models, which contain the information on the directed acyclic
graph (DAG) of LISA operations and the inputs and outputs
resources for individual architecture units. The PeMM character-
ization module translates the behavior of processor architecture
units into C-based functions with signal inputs and output as
function arguments. Testbenches are generated to inject random
faults to function inputs, where PeMMs are fast characterized.
Special language directives are checked by the LISA parser for
finer PeMM characterization according to techniques in section
, II-B2 and II-C2.

The execution stage starts with the creation of token by user
using a graphical interface. The token represents the fault in

terms of error probability, along with other fields representing
the micro-architectural and timing information required to track
the token as it propagates. The cycle accurate error tracker
works for generic processor models, which tracks the token
propagation with possible masking effects applying PeMMs for
architecture units. The reports on predicted errors are generated
by the error tracker, which documents detailed paths of token
propagation and various masking effects through architecture
units.

A. Error Representation
In contrast to fault injection method where the value of

resources is changed dynamically, token is created as an abstract
data structures which does not change the resource values.
Instead, error probability is updated during token propagation.
Error probability is initially set to 1 during token creation while
fine-grained probability is set based on the approximated error
granularity in section II-C2. When error probability is masked
to 0 the token is removed. Hardware resource ID and memory
array index are associated with each token so that the PeMM
addresses the corresponding token correctly. Specific resources
are possible to contain multiple sub-tokens, for instance the
instruction register, which consists of multiple decoding fields
such as opcode, source and destination operands. Due to various
coding functionality so as the masking probabilities, such fields
are treated as separated elements in the input vector of PeMM
although located in the same resource.

Algorithm 1 Token Tracking Routine
1: function TRACKTOKEN(∗op, ∗token, ∗PeMM )
2: for all op id do . Create tokens by activation analysis
3: if op[op id] is active then
4: if ∃token[tk id] in op[op id].inputs then
5: Update with PeMM [op id] for op[op id];
6: Schedule to create tokens in op[op id].outputs;
7: New tokens labeled as high priority;
8: end if
9: end if

10: end for
11: for all tk id do . Create tokens by pipeline behaviors
12: if token[tk id] is in pipeline registers then
13: Schedule to remove token[tk id];
14: if token[tk id] is not in last pipeline stage then
15: Schedule forwarding token in next stage as low priority;
16: end if
17: end if
18: end for
19: Remove tokens();
20: Create tokens(); . Create/remove tokens at end of the control step
21: end function

22: function CREATE TOKENS
23: for all tokens in schedule creating list do
24: if ∃old token in new location then
25: Overwrite old token;
26: end if . Overwrite existing tokens
27: if multiple tokens are scheduled in the same location then
28: Create token with high priority;
29: else . Forwarded tokens have less priority
30: Create token;
31: end if
32: end for
33: end function

B. Token Tracking
Since no actual faults are injected but only abstract tokens,

the simulator maintains correct execution flow while indicates
potential errors. Algorithm 1 shows the token tracker routine
called between consecutive processor control steps. The routine
starts with the activation analysis of LISA operations. If any
operations whose inputs contain tokens are activated, the tokens
are updated by PeMMs and propagate to the outputs of the



operation by the end of the cycle. Due to synchronized register
behaviors, the tokens cannot be immediately created or removed
before the completion of analysis for the current cycle, but are
scheduled for creation and removal. After activation analysis for
operations, the tokens in pipeline registers are forwarded to the
next pipeline stage. However, forwarded tokens have less prior-
ity compared with the ones created from the active operations.
For memory and register files, old tokens are overwritten by
new arriving ones.

IV. RESULTS IN RELIABILITY ESTIMATION

To demonstrate the usability of the approximate error pre-
diction flow, we present several case studies using an embedded
RISC processor modeled using LISA language from IPs of Syn-
opsys Processor Designer [23]. The processor has five pipeline
stages with fully bypassing and forwarding functionality. Verilog
models are generated automatically for fault injection experi-
ments.

A. Error Prediction Analysis

We compare the predicted error probability with Verilog-
based fault injection experiments [4], where the faults can
be injected into physical resources such as pipeline registers,
RTL signals, register file and memory arrays of the processor
in Verilog representation. A testbench containing all types of
instructions for the RISC processor is designed, which processes
data in a loop using general purpose register arrays and stores the
final data into memory. Error prediction results using different
modes of PeMM construction are compared with RTL fault
injection. In each fault injection experiment single bit-flip fault
is randomly injected among 32 bits of register containing input
data of the testbench. 1,000 such fault injection experiments with
random input values are performed to calculate the average error
probabilities on selected hardware resources. On the contrary,
proposed error prediction analysis is performed only once to
show the predicted error probabilities with the same fault
configuration. Table II shows the time gained in evaluating error
prediction using proposed approach against Verilog-based fault
injection for the same testbench.

Proposed error prediction Verilog fault injection [4]
Time (sec) 0.015 187

TABLE II
RUN-TIME BENEFIT AGAINST VERILOG-BASED FAULT INJECTION

1) Run-time of Preparatory Stage: The preparatory stage
consists of two phases, the parsing stage analyzes proces-
sor description in LISA language and converted into C-based
characterization testbenches, while the characterization phase
generates PeMM elements based on the pre-defined PeMM
modes. The parsing phase splits larger logic blocks and inserts
helper signals based on user defined language constructs to
decomposed larger logic blocks.

The preparatory stage analyzes 42 operations for the RISC
processor. Table III shows the timing overhead for the prepara-
tory stage on the host machine with Intel Core i7 CPU at
2.8 GHz. For each PeMM element, 100,000 characterization
experiments are performed. It is observed that analysis of
enhanced PeMM modes consumes more time in both phases.

Initial PeMM Split only PeMM Split+full ass-signals
(sec) (sec) PeMM (sec)

Parsing 0.14 0.17 0.26
Characterization 2.80 2.85 4.75

TABLE III
PROCESSING TIME FOR AUTOMATED PEMM PREPARATION

2) Error Prediction Accuracy: Figure 6 shows the prediction
results. It is indicated that the initial PeMM without matrix
decomposition achieves least similarity compared with fault
injection, while proper PeMM decomposition and appliance of
assistant signals for control flow prediction shorten the gap
significantly. When assistant signals are inserted for control
paths in all logic blocks, the predicted error probabilities and
locations perfectly match the results from fault injection.

Fig. 6. Error Prediction Comparison for Different Modes of PeMM against
Fault Injection [4]

B. Run-time Timing Overhead for Token Tracking
1) Timing Analysis against Token Counts: The token tracking

framework is an extension of the cycle accurate instruction-
set simulator from Synopsys Processor Designer [23]. Table
IV shows the timing overhead caused by the token tracking
against original simulation using several embedded benchmarks.
Analysis without any token adds in average 28.4% simulation
overhead due to the additional analysis for operation activation
in each clock cycle. When there is one token created, the
tracking routine consumes 6.7% overhead. When 20 tokens are
created, in average 79.3% overhead is added. The exact over-
heads differs among experiments due to the host machine usage
and randomness in both injected location and time instance,
where in most of the cases tokens are masked during execution.
Tracking of multiple tokens scales the simulation time in a
linear fashion due to the fact that tokens are managed in the
unordered hash map with algorithmic complexity of O(1) for
element searching [25].

Apps Synopsys Error tracker
ISS simulation [23] 0 token 1 token 20 tokens

No fault (sec) (sec) +% (sec) +% (sec) +%
Cordic 1.7 2.3 35 2.5 9 3.3 32
CRC 2.1 3.2 52 3.4 6 6.2 82
IDCT 2.5 2.8 12 2.9 4 7.0 141

Rijndael 2.3 3.5 52 3.9 11 5.8 49
Sobel 1.8 2.1 17 2.4 14 6.4 167
Viterbi 3.3 4.3 30 4.4 2 8.1 84

Average - - 28.4 - 6.7 - 79.3

TABLE IV
TIMING OVERHEAD ANALYSIS AGAINST ARCHITECTURE SIMULATOR



2) Timing Analysis against Modes of PeMM: Figure 7 shows
time consumed by several embedded benchmarks using different
modes of PeMM. It is observed that run-time efforts of error
prediction using split PeMM with helper signals increase, which
shows a trade-off between prediction accuracy and analysis time.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Cordic CRC IDCT Rijndael Sobel Viterbi

A
n

a
ly

si
s 

T
im

e
 (

se
c)

Applications

Intial PeMM

Split only PeMM

Split+full ass-signals

Fig. 7. Run-time among Different PeMM Modes

C. Prediction of Error Locations
The advantage of error prediction goes beyond its speed and

accuracy. Fault injection is impossible to track where exactly
the errors result in the huge memory address space. The ability
to predict error locations especially in memory array assists the
designer to find the potential error effects in particular hardware
resources. We demonstrate the usage of data prediction using
the median filter [26] where both input and output images are
shown in figure 8. When two tokens are injected in the memory
location which contains the input image, their affecting regions
are predicted in the output image accordingly. Such prediction
matches the algorithm specification in [26], where the value of
each pixel in the output image is related to the median value of
the pixel at the same position and its surrounding 8 values in
the input image.

X
X X

XX

Original 16x16 image with injected token Image after median filter with predicted errors

X XX

XX

XX

X

X

X

Fig. 8. Error Prediction for Median Filter Application

V. CONCLUSION

In this work, probabilistic error masking matrix is introduced
to investigate the error masking effects of logic circuits. Taking
advantage of PeMM, a fast and approximate error prediction
framework integrated with commercial processor design flow is
introduced which tracks the paths of error propagation and esti-
mates fine-grained error probabilities. Vulnerability of hardware
resources can be easily estimated, while location and signifi-
cance of errors are predicted. Benchmark results with state-of-
the-art RTL fault injection indicates that the proposed framework
achieves high accuracy of error prediction and significant speed-
up.

Future work includes detailed QoS-reliability exploration for
applications in approximate computing using the framework.

Besides, the setup of proposed framework for generic processors
will be automated so that error propagation on application
specific architectures can be fast and accurately analyzed.

REFERENCES

[1] C. Constantinescu. Trends and challenges in vlsi circuit reliability. IEEE
Micro, 23(4):14–19, 2003.

[2] E. Normand. Single event upset at ground level. IEEE Transactions on
Nuclear Science, 43(6):2742–2750, 1996.

[3] P. Bose J. Rivers J. Srinivasan, S. V. Adve and C. K. Hu. RAMP: A model
for reliability aware microprocessor design. IBM Research Report, 2003.

[4] D. Kammler, J. Guan, G. Ascheid, R. Leupers and H. Meyr. A fast
and flexible Platform for Fault Injection and Evaluation in Verilog-based
Simulations. In Proc. 3rd IEEE International Conference on Secure
Software Integration and Reliability Improvement (SSIRI), 2009.

[5] M. Sugihara, T. Ishihara, M. Muroyama and K. Hashimoto. A Simulation-
Based Soft Error Estimation Methodology for Computer Systems. In
ISQED, pages 196–203, 2006.

[6] H. Cho, S. Mirkhani, C. Cher, J. A. Abraham, and S. Mitra. Quantitative
evaluation of soft error injection techniques for robust system design. In
DAC, page 101, 2013.

[7] S. S. Mukherjee, C. T. Weaver, J. S. Emer, S. K. Reinhardt, and T. M.
Austin. A systematic methodology to compute the architectural vulnera-
bility factors for a high-performance microprocessor. In MICRO, pages
29–42, 2003.

[8] A. Biswas, P. Racunas, J. S. Emer, and S. S. Mukherjee. Computing
Accurate AVFs using ACE Analysis on Performance Models: A Rebuttal.
Computer Architecture Letters, 7(1):21–24, 2007.

[9] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel. Reliable software for
unreliable hardware: embedded code generation aiming at reliability. In
CODES+ISSS, pages 237–246, 2011.

[10] S. Rehman, M. Shafique, F. Kriebel and J. Henkel. RAISE: Reliability-
Aware Instruction SchEduling for unreliable hardware. In ASP-DAC ’12,
pages 671 –676, 30 2012-feb. 2 2012.

[11] D. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao, T. Pham, C. H. Ziesler,
D. Blaauw, T. M. Austin, K. Flautner, and Trevor N. Mudge. Razor: A
low-power pipeline based on circuit-level timing speculation. In MICRO,
2003.

[12] J. Srinivasan, S. V. Adve, P. Bose and J. A. Rivers. The Case for
Lifetime Reliability-Aware Microprocessors. SIGARCH Comput. Archit.
News, 32(2):276, 2004.

[13] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing Processors from
the Ground up to Allow Voltage/Reliability Tradeoffs. In HPCA, 2010.

[14] S. K. Reinhardt and S. S Mukherjee. Transient Fault Detection via
Simultaneous Multithreading. ISCA ’00, pages 25–36, 2000.

[15] A. DeHon, H. M. Quinn, and N. P. Carter. Vision for cross-layer
optimization to address the dual challenges of energy and reliability. In
DATE, pages 1017–1022. IEEE, 2010.

[16] R. Hegde and N.R. Shanbhag. Energy-efficient Signal Processing via
Algorithmic Noise-tolerance. ISLPED ’99.

[17] H. Cho, L. Leem and S. Mitra. ERSA: Error Resilient System Architecture
for Probabilistic Applications. IEEE Trans. on CAD of Integrated Circuits
and Systems, 31(4):546–558, 2012.

[18] K. Palem and A. Lingamneni. Ten years of building broken chips: The
physics and engineering of inexact computing. ACM Trans. Embed.
Comput. Syst., 12(2s):87:1–87:23, May 2013.

[19] M. Willems H. Keding, F. Hrtgen and M. Coors. Transformation of
floating-point into fixed-point algorithms by interpolation applying a
statistical approach. In Proc. Int. Conf. on Signal Processing Application
and Technology (ICSPAT), Toronto, sep 1998.

[20] S. Krishnaswamy, G. F. Viamontes, I. L. Markov and J. P. Hayes.
Probabilistic transfer matrices in symbolic reliability analysis of logic
circuits. ACM Trans. Design Autom. Electr. Syst., 13(1), 2008.

[21] Norbert Seifert, Balkaran Gill, Shah Jahinuzzaman, Joseph Basile, Vinod
Ambrose, Quan Shi, Randy Allmon, and Arkady Bramnik. Soft error sus-
ceptibilities of 22 nm tri-gate devices. Nuclear Science, IEEE Transactions
on, 59(6):2666–2673, 2012.

[22] David Roxbee Cox and David Victor Hinkley. Theoretical statistics. CRC
Press, 1979.

[23] Synopsys. Processor Designer
http://www.synopsys.com/Systems/BlockDesign/processorDev.

[24] A. Chattopadhyay, H. Meyr and R. Leupers. LISA: A Uniform ADL for
Embedded Processor Modelling, Implementation and Software Toolsuite
Generation, chapter 5, pages 95–130. Morgan Kaufmann, jun 2008.

[25] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[26] T. Huang, G. Yang, and G. Tang. A fast two-dimensional median filtering
algorithm. IEEE Trans. Acoust., Speech, Signal Processing, 27(1):13–18,
1979.


