
Fast Exponential Computation on SIMD Architectures

A. Cristiano I. Malossi, Yves Ineichen, Costas Bekas, and Alessandro Curioni

IBM Research - Zurich, Switzerland

Cognitive Computing & Computational Sciences Department

{acm,yin,bek,cur}@zurich.ibm.com

Abstract—State of the art implementations of the exponential
function rely on interpolation tables, Taylor expansions or IEEE
manipulations containing a small fraction of integer operations.
Unfortunately, none of these methods is able to maximize the profit
of vectorization and at the same time, provide sufficient accuracy.
Indeed, many applications such as solving PDEs, simulations of
neuronal networks, Fourier transforms and many more involved a
large quantity of exponentials that have to be computed efficiently.

In this paper we device and demonstrate the usefulness of a novel
formulation to compute the exponential employing only floating point
operations, with a flexible accuracy ranging from a few digits up to the
full machine precision. Using the presented algorithm we can compute
exponentials of large vectors, in any application setting, maximizing
the performance gains of the vectorization units available to modern
processors. This immediately results in a speedup for all applications.

Keywords-Exponential Function; SIMD Architectures; Approxi-
mate Computing; Neural Network; Fourier Transform; Wave Equa-
tions

I. INTRODUCTION

The natural exponential function f(x), hereafter simply referred

to as exponential function, is defined as

f(x) = ex ≡ exp (x), (1)

where x is the exponent and e the Euler’s number, i.e., the base

of the exponential function.

Many problems such as neuronal network simulations [1],

Fourier transforms, wave equations as well as lumped models for

cardiovascular problems [2], [3], radioactive decay, and population

growth models [4], imply repeated evaluation of the exponential

function. In particular, in all these applications, the time required

to evaluate (1) might represent the main computational bottleneck,

limiting the over-all time-to-solution for the problem.

In this paper we present a novel fast and accurate method to

evaluate the exponential function with an arbitrary degree of accu-

racy. Our method is based on IEEE manipulation implementations

(see Section II) coupled with polynomial interpolation. In order to

harvest the full power of H/W features of modern processors, such

as short vector instruction units, we reengineered the algorithm.

Single instruction multiple data (SIMD) units apply the same

operations on a vector like register in a single cycle. For example

on a vector register of 4 double-precision values, a SIMD unit can

execute an operation, i.e., scaling by the values by a constant, with

one single instruction on all 4 values simultaneously.

IBM, the IBM logo, ibm.com, Blue Gene/Q, PowerPC, POWER7, and POWER8
are trademarks or registered trademarks of International Business Machines Cor-
poration in the United States, other countries, or both.

In the following we target double-precision architectures, i.e., x

in (1) is defined in the approximate interval (-746; 710) to respect

the IEEE limits. However, our algorithm can be adapted without

major modifications to arbitrary and variable precision arithmetic

architectures (single-precision, quadruple-precision, GPUs, FP-

GAs, etc.). The main advantages of our approach are:

1) In case of streams of exponentials, our algorithm enables the

use of only SIMD instructions, while existing algorithms still

require a number of non-vectorizable operations.

2) The formulation empowers the user to specify the required

accuracy of computing the exponential. This is very important

because the required accuracy depends on the application and

in many cases an approximation to a couple of digits suffices.

3) Ultimately this allows us to maximize performance, and at

the same time, it minimizes energy consumption.

In Section II we discuss existing techniques that are used to

compute the exponential (1) before we move on to our new

approach in Section III. Finally we benchmark our approach in

Section IV and conclude with a summary of features and remarks

in Section V.

II. STATE-OF-THE-ART METHODS

Several methods exist in the literature to compute exactly or

approximately the exponential function. In the following we list

the most widely used approaches, indicating major pros and cons.

A. Power series/Taylor expansions

By using power series or Taylor expansions, equation (1) can

be re-written as

ex =

∞
∑

k=1

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ . . .

The main advantage of this strategy is that the accuracy of the

exponential function can be controlled by varying k. In the limit

(k towards infinity) the sum converges to the exact value of the

exponential function. However, this approach has a very slow

convergence rate for increasing values of k, unless x is close

to zero1. Note that even with Horner’s method it requires too

many floating-point multiply-add operations to obtain the desired

accuracy. This is a severe disadvantage and limits the efficiency of

an implementation.

1If the range of value of x is limited and known a priori, the rule e
x
= e

z
·e

x−z

can be applied, being z a constant.

B. Look-up tables

The exponential function can be analytically converted in a base-

two expression and subsequently decomposed in its integer xi and

fractional xf parts, i.e.,

ex = 2x log
2
(e) = 2xi+xf , (2)

where we remark that xf ∈ [0, 1). Different algorithms based on

one or more look-up tables can be used to evaluate 2xi and 2xf

separately. Examples of this approach are [5]–[7], as well as the

patents [8], [9]. Look-up tables are in general faster than Taylor

expansions, as they are based on linear interpolation, however

they do not fully exploit floating-point arithmetics and cannot be

implemented using only SIMD instructions, due to the presence of

conditional statements.

C. IEEE-745 manipulation

A well know trick to get a fast approximation of the exponential

is to manipulate the components of a standard IEEE-745 floating-

point representation [10]. This technique has been first published

by Schraudolph in [11], and later extended in [12]. More in detail,

IEEE-745 floating-point numbers are represented in the form

(−1)s(1 +m)2x−x0, (3)

where s is the sign bit, m the mantissa (i.e., a binary fraction

in the range [0, 1)), and x the exponent, shifted by a constant

bias x0. For double-precision floating-point numbers, the IEEE-745

standard specifies that x0 is equal to 1023, and that the length of

the exponent x and the mantissa m are 11 and 52 bits, respectively,

for a total of 64 bits (8 bytes), including the sign bit. Schraudolph

noted the similarity between (2) and (3) and developed a technique

to take advantage of the 2x power implied in the standard floating-

point representation. To do that, he shifts the exponent by the

number of bits required to obtain the integer part of the exponential

(i.e., 2xi), and then he approximates the fractional part 2xf

with (1 + m). This approach can be summarized in three steps:

(i) store the manipulated input exponent x in an 32 bit integer

variable int i as

int i = A · x+B − C, (4)

with A = S
/

ln(2), B = S · 1023, C = 60801, being S = 220

the shift factor, (ii) concatenate the 32 bit integer int i with

another 32 bit integer int j to form a 64 bit line, and (iii) interpret

the 64 bit line as a double-precision floating-point number, which

actually coincides with the approximation of ex in (1). See [11,

Figure 1] for more details.

The approximation developed by Schraudolph relies on simple

arithmetics, which consists of a single floating-point multiply-add

in (4), where A, B, and C are precomputed constants. However,

the accuracy of the approximation is very low, i.e., only a single-

digit, even though the C constant has been computed to minimize

the RMS relative error.

III. METHODOLOGY

Even though several exponential function algorithms exist in the

literature, none of them is able to profit from the SIMD capabilities

of modern architectures and, at the same time, provide sufficient

accuracy. We propose a new algorithm to accurately evaluate the

exponential function, while extensively using vector instructions

and thus attain an optimal hardware utilization.

The main idea of our methodology is to combine the manip-

ulation of the standard IEEE-745 floating-point representation, as

proposed by Schraudolph in [11], with a polynomial interpolation

of the fractional part 2xf . We will show that the resulting algorithm

can be written in a very compact form relying on only SIMD

instructions. This enables a fast and energy-aware implementation

of the exponential function, well suited for state-of-the-art architec-

tures and supercomputers, such as the IBM® POWER7, POWER8

and IBM® BG/Q.

A. Derivation

Our starting point is equation (4), which is derived in [11].

To recover accuracy, without compromising the performance, we

make the following modifications:

1) We use a single 64 bit long int instead of two contiguous

32 bit int: this simplify the conversion to double, and allows

to profit from all the 52 bits of the double-precision mantissa.

2) As a consequence from point 1), all operations exclusively

use double-precision, setting the shift factor S equal to 252.

3) We set C = 0, as this constant is useless with our subsequent

modifications.

4) from (2), we write the following equality

ex = 2xi · 2xf ≈ 2xi · (1 +m−K), (5)

where K is a correction function (defined below) to improve

the accuracy of the approximation.

5) Solving equation (5) for K we get

K = 1 +m− 2xf .

Moreover, we note that m ≡ xf , so that we can define the

correction function as

K(xf) = 1 + xf − 2xf ,

where we remark that xf is defined in the limited do-

main [0, 1).
6) We model the correction function K(xf) with a polynomial

Kn(xf) in the form

Kn(xf) = a · xn
f + b · xn−1

f + c · xn−2
f + . . . ,

where n ∈ [1, 10] denotes the order of the polynomial

interpolation. The coefficients {a, b, c, . . . } are pre-computed

according to the chosen interpolation.

7) Last, we plug our polynomial in the original expression, i.e.,

long int i = A (x− ln(2) · Kn(xf)) +B. (6)

Note that the expression in (6) is similar to the original one

in (4). However, as we show in the following, the new expression

can match the accuracy of the standard reference implementation,

i.e., by computing it to 16 digits.

Algorithm I Input: x and n; Output: f(x) ≈ ex

1: x = x · log2(e)
2: xf = x− floor(x)
3: x = x−Kn(xf), with Kn(xf) = a·xn

f+b·xn−1
f +c·xn−2

f +. . .

4: Compute the long int i as: 252 · x+ B
5: Read the long int i as a double and return the value as the

approximated exponential ex

Kernel I: Machine independent C++ implementation of the scalar

version of the exponential function with a polynomial of degree 5.

The green line leads to the accuracy in Figure 1b black/orange

solid lines, while the yellow line extend the accuracy as in

Figure 1b black/orange dashed lines. All the variables starting with

the prefix “COEFF_” are precomputed constants stored as macros.

1 double fast_exp_P5 (double x)

2 {

3 x *= COEFF_LOG2E;

4

5 const double fractional_part = x - floor(x);

6

7 x -= ((((COEFF_P5_A

8 * fractional_part + COEFF_P5_B)

9 * fractional_part + COEFF_P5_C)

10 * fractional_part + COEFF_P5_D)

11 * fractional_part + COEFF_P5_E)

12 * fractional_part + COEFF_P5_F;

13

14 long int castedInteger = (long int) (COEFF_A * x + COEFF_B);

15 long int castedInteger = (long int) (COEFF_A * static_cast<long double> (x) +

16 COEFF_B);

17 return reinterpret_cast< double& > (castedInteger);

18 }

B. Algorithm

From the practical point of view, an efficient algorithmic work-

flow of the methodology described in the previous section is

provided in Algorithm I. In the following we provide more details

on the five steps in the algorithm:

Step 1: The result of this line can be stored back in x. Note that

in [11] the author divides x by ln(2), which leads to the same

result, but with an additional cost for a floating-point division

operation.

Step 2: The use of floor allows a correct approximation also for

negative exponents.

Step 3: All the required coefficients are pre-computed;

Step 4: For the machine precision accuracy, two static cast might

be required in C++ (see later Kernel I).

Step 5: This step in C++ can be performed as a reinterpret cast.

C. Implementation

The implementation of Algorithm I can be tuned according to

the target architecture to maximize performance.

In Kernel I our algorithm is implemented in standard C++.

This scalar version can be used on any architecture, since does

not make use of architecture-dependent SIMD vector instructions.

The example in Kernel I make use of a polynomial of degree 5;

the implementation for other degrees is straightforward. Note that

the value of the coefficients of the polynomial, identified by the

prefix “COEFF_P5” are independent from the implementation; in

other words, the user can decide the preferred polynomial for his

implementation without changing the code.

Kernel II: IBM C++ implementation of the SIMD vector version

of the exponential function with a polynomial of degree 5 on

IBM BG/Q, where the input vector is assumed to be divisible by 4.

The green and the yellow lines correspond to two possible

alternative implementations; the blue line is used for OpenMP

parallelism (only together with yellow lines); all other lines are

present in both versions. All the variables starting with the prefix

“COEFF_” are precomputed constants stored as macros.

1 vector double fast_expd2_P5 (vector double x_vd)

2 void fast_vexp_P5 (double * y, double * x, const int& vsize)

3 {

4 const vector4double a_vd = vec_splats(COEFF_P5_A), d_vd = vec_splats(COEFF_P5_D);

5 const vector4double b_vd = vec_splats(COEFF_P5_B), e_vd = vec_splats(COEFF_P5_E);

6 const vector4double c_vd = vec_splats(COEFF_P5_C), f_vd = vec_splats(COEFF_P5_F);

7 const vector4double coeffA_vd = vec_splats(COEFF_A),

8 const vector4double coeffB_vd = vec_splats(COEFF_B);

9 const vector4double M_LOG2E_vd = vec_splats(COEFF_LOG2E);

10

11 #pragma omp parallel for schedule(static)

12 for (int j = 0; j < vsize ; j+=4) {

13 x_vd = vec_mul(x_vd, M_LOG2E_vd);

14 vector4double x_vd = vec_mul(vec_ld(0, &x[j]), M_LOG2E_vd);

15 vector4double fractional_part_vd = vec_sub(x_vd, vec_floor(x_vd));

16 return vec_ctidu(vec_madd(vec_sub(x_vd,vec_madd(fractional_part_vd,

17 vec_st(vec_ctidu(vec_madd(vec_sub(x_vd,vec_madd(fractional_part_vd,

18 vec_madd(fractional_part_vd,

19 vec_madd(fractional_part_vd,

20 vec_madd(fractional_part_vd,

21 vec_madd(fractional_part_vd,

22 a_vd,b_vd),c_vd),d_vd),e_vd),f_vd))),

23 coeffA_vd,coeffB_vd));

24 coeffA_vd,coeffB_vd)), 0, &y[j]);

25 }

26 }

In Kernel II we provide an implementation of the exponential

function algorithm tuned for the IBM® Blue Gene/Q (BG/Q). This

implementation make extensive use of SIMD vector instructions.

Similar implementations for IBM® POWER7 and POWER8 are

straightforward, as well as those for other architectures, e.g., Intel®

Streaming SIMD Extensions (SSE) or Advanced Vector Extensions

(AVX). All the instructions, including the loads, the store, the

floating-point multiply-add, the floor, and the long int to double

conversion are SIMD vectorized. On IBM® BG/Q this allows to

process four exponent at the same time, i.e., during the same CPU

cycles. It can be also noted that in this implementation, Steps 3,

4, and 5 in Algorithm I have been joined in a single code line

to minimizes the number of temporary variables, even though the

compiler can always decide to reintroduce them.

We remark that these implementations are presented as reference

in a high level fashion. In particular, assembly code is suppressed.

Although modern compilers do a good job in optimizing the

code, an assembler version allows a precise accountability of used

instructions.

D. Accuracy

One of the main features of the presented methodology is that

the accuracy of the approximated exponential function can be tuned

by the user, who has the flexibility to decide the degree n (and the

type) of polynomial that models the correction function in Step 3

of Algorithm I. A library with a range of implementations for n ∈
[1, 10] can be available at compile time to provide this functionality

in a general way.

In Figure 1 we show the relation between the degree n and

the norm-inf of the error for two polynomials: Chebyshev of

1 2 3 4 5 6 7 8 9 10
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Polynomial degree

||E
rr

o
r|

| ∞

Chebyshev polynomial
Remez polynomial
Machine precision

(a)

1 2 3 4 5 6 7 8 9 10
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Polynomial degree

||E
rr

o
r|

| ∞

Chebyshev polynomial
Remez polynomial
Chebyshev polynomial (long double cast)
Remez polynomial (long double cast)
Machine precision

(b)

Figure 1: Chebyshev polynomial (first kind) vs. Remez polynomial.

(a) Fractional part approximation, i.e., ‖Kn(xf)−K(xf)‖. (b) Ex-

ponential approximation with x ∈ [0, ln (2)]. Machine precision

accuracy is recovered by using a cast to long double for degrees 9

and 10.

the first kind, and the Remez. The latter one minimizes the

infinity norm of the error. Among other information, the figure

shows how a polynomial of degree 4 guarantee an accuracy of

at least 6 digits, which is already more than enough for most of

the scientific computing applications. Moreover, a polynomial of

degree 8 reaches an accuracy of at least 12 digits, and for the most

demanding scenarios the machine precision can be reached with

a polynomial of degree 10 and an additional cast to long double

(see yellow line in Kernel I).

IV. RESULTS

To benchmark the potential of our algorithm we tested it on

two architectures, namely the IBM® Blue Gene/Q supercom-

puter [13] and the IBM® Power 755 (P755) server [14]. Both

architectures have 4 hardware threads per core and are equipped

with multiple cache levels. As a reference, we compare only

against the IBM® MASS implementation, since we verified that

IBM® MASS performance is always as good or better than the

std::exp performance.

In Figures 2 and 3 we show the time and percentual reduction

with respect to the IBM® MASS library for both architectures.

In particular, Figure 2 targets L1 cache, with a small vector of

27 exponents, while Figure 3 targets DDR memory, with a long

vector of 222 exponents. For both cases and architectures we notice

that our approach (labeled as “Polynomial”) is better than the cor-

responding implementation provided by the IBM® MASS library.

Note that IBM® MASS library offers three implementations: a

scalar version (labeled as “Mass” and compared with Kernel I), a

SIMD vector version with standard interface (labeled as “Mass V.”

and compared with Kernel II, yellow lines), and a SIMD vector

version with a machine-dependent interface (labeled as “Mass

V4D” on IBM® BG/Q and “Mass V2D” on IBM® P755, and

compared with Kernel II, green lines). In all the presented cases,

our algorithm perform better than the reference IBM® MASS

implementation. Moreover, we can observe how performances can

be further increased by reducing the degree n of the interpolating

polynomial.

Finally, as shown in Kernel II, the algorithm can be extended

easily to incorporate threads (see blue line) and split up the work

even further for large vectors. As shown in Figure 4, the OpenMP

implementation with one thread, pays a small overhead with

respect to the non-threaded version. However this effect disappears

when using two or more threads, leading to increased performance,

expecially for large vectors.

V. CONCLUSIONS

We presented an algorithm to compute the exponential of a value

(or of a list of values) with an augmented vectorization friendliness

that allows us to speed up the computation by a large factor. The

main advantages or our approach are:

1) The user has control over accuracy of the exponential, by

selecting an appropriate degree of the polynomial approxi-

mating the fractional part 2xf . This can have high impact on

the final application, as the user knows best which accuracy

is reccommended to solve the problem at hand.

2) The algorithm is designed to enable a pure SIMD imple-

mentation. This has been demonstrated on IBM® BG/Q

(with QPX vectorization) and on IBM POWER7 (with VSX

vectorization). Similar implementations on other architectures,

e.g., Intel® are straighforward.

3) The algorithm provides a huge reduction in the time-

to-solution. This has been quantified in up to 96 %

on IBM® BG/Q and POWER7 architectures. Similar

performances are expected on other architectures (e.g.,

IBM® POWER8 and Intel®).

4) Additionally, the scalar versions, where only one exponential

is evaluated at each call and thus SIMD instructions are

not applicable, provides also a sensible reduction in time-

to solution (between 10 % and 50 % on IBM® BG/Q, and

between 75 % and 90 % on IBM® POWER7).

5) OpenMP helps to further improve time-to-solution in the case

of large vectors (e.g., vectors that do not fit the lower caches

levels.

6) In case of a vector size that is not divisible by the SIMD

factor (i.e., 4 on BGQ and 2 on POWER7) the performances

does not diminish significantly.

7) Also energy-to-solution is reduced, mainly as a consequence

of the diminished computational time.

The last two points have been verified on both architectures, even

if results are not presented here.

ACKNOWLEDGMENTS

The project Exa2Green (under grant agreement n◦318793) ac-

knowledges the financial support of the Future and Emerging

1 2 3 4 5 6 7 8 9 10
10

−10

10
−9

10
−8

10
−7

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 [
s]

Polynomial
Polynomial QPX V.
Polynomial QPX V4D
Mass
Mass V.
Mass V4D

(a)

1 2 3 4 5 6 7 8 9 10
10

−10

10
−9

10
−8

10
−7

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 [
s]

Polynomial
Polynomial VSX V.
Polynomial VSX V2D
Mass
Mass V.
Mass V2D

(b)

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

70

80

90

100

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 r
ed

u
ct

io
n
 [

%
]

Polynomial
Polynomial QPX V.
Polynomial QPX V4D

(c)

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

70

80

90

100

Polynomial degree
T

im
e

p
er

 e
x
p
o
n
en

ti
al

 r
ed

u
ct

io
n
 [

%
]

Polynomial
Polynomial VSX V.
Polynomial VSX V2D

(d)

Figure 2: Time per exponential (top row) and corresponding percentual reduction with respect to the IBM® MASS library (bottom row)

for a vector of size 27. LEFT: IBM® BG/Q, RIGHT: IBM® P755.

1 2 3 4 5 6 7 8 9 10
10

−10

10
−9

10
−8

10
−7

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 [
s]

Polynomial
Polynomial QPX V.
Polynomial QPX V4D
Mass
Mass V.
Mass V4D

(a)

1 2 3 4 5 6 7 8 9 10
10

−10

10
−9

10
−8

10
−7

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 [
s]

Polynomial
Polynomial VSX V.
Polynomial VSX V2D
Mass
Mass V.
Mass V2D

(b)

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

70

80

90

100

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 r
ed

u
ct

io
n
 [

%
]

Polynomial
Polynomial QPX V.
Polynomial QPX V4D

(c)

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

70

80

90

100

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 r
ed

u
ct

io
n
 [

%
]

Polynomial
Polynomial VSX V.
Polynomial VSX V2D

(d)

Figure 3: Time per exponential (top row) and corresponding percentual reduction with respect to the IBM® MASS library (bottom row)

for a vector of size 222. LEFT: IBM® BG/Q, RIGHT: IBM® P755.

Technologies (FET) programme within the ICT theme of the Seventh Framework Programme for Research (FP7/2007-2013) of

1 2 3 4 5 6 7 8 9 10
10

−10

10
−9

10
−8

10
−7

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 [
s]

Polynomial QPX V. − No OpenMP
Polynomial QPX V. − 1 thread
Polynomial QPX V. − 2 threads
Polynomial QPX V. − 4 threads
Polynomial QPX V. − 8 threads
Polynomial QPX V. − 16 threads
Mass V.

(a)

1 2 3 4 5 6 7 8 9 10
10

−10

10
−9

10
−8

10
−7

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 [
s]

Polynomial VSX V. − No OpenMP
Polynomial VSX V. − 1 thread
Polynomial VSX V. − 2 threads
Polynomial VSX V. − 4 threads
Polynomial VSX V. − 8 threads
Mass V.

(b)

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

70

80

90

100

Polynomial degree

T
im

e
p
er

 e
x
p
o
n
en

ti
al

 r
ed

u
ct

io
n
 [

%
]

Polynomial QPX V. − No OpenMP
Polynomial QPX V. − 1 thread
Polynomial QPX V. − 2 threads
Polynomial QPX V. − 4 threads
Polynomial QPX V. − 8 threads
Polynomial QPX V. − 16 threads

(c)

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

70

80

90

100

Polynomial degree
T

im
e

p
er

 e
x
p
o
n
en

ti
al

 r
ed

u
ct

io
n
 [

%
]

Polynomial VSX V. − No OpenMP
Polynomial VSX V. − 1 thread
Polynomial VSX V. − 2 threads
Polynomial VSX V. − 4 threads
Polynomial VSX V. − 8 threads

(d)

Figure 4: Time per exponential (top row) and corresponding percentual reduction with respect to the IBM® MASS library (bottom row)

with and without OpenMP directives (always one thread per core) for a vector of size 222. LEFT: IBM® BG/Q, RIGHT: IBM® P755.

the European Commission.

REFERENCES

[1] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. Bower,
M. Diesmann, A. Morrison, P. Goodman, F. C. Harris, and et al.,
“Simulation of networks of spiking neurons: A review of tools and
strategies,” Journal of Computational Neuroscience, vol. 23, no. 3,
pp. 349–398, 2007.

[2] P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Ster-
giopulos, “Validation of a one-dimensional model of the systemic
arterial tree.” American journal of physiology. Heart and circulatory
physiology, vol. 297, no. 1, pp. H208–22, 2009.

[3] A. C. I. Malossi, P. J. Blanco, and S. Deparis, “A two-level
time step technique for the partitioned solution of one-dimensional
arterial networks,” Computer Methods in Applied Mechanics and
Engineering, vol. 237-240, pp. 212–226, 2012.

[4] P. Auger and J.-C. Poggiale, “Emergence of population growth
models: fast migration and slow growth,” Journal of Theoretical
Biology, vol. 182, no. 2, pp. 99–108, 1996.

[5] C. Baumann, “A simple and fast look-up table method to compute the
exp(x) and ln(x) functions,” http://www.convict.lu/Jeunes/ultimate_
stuff/exp_ln_2.htm, July 2004.

[6] H. Ainsworth, “Fast pow() with adjustable accuracy,” http://www.
hxa.name/articles/content/fast-pow-adjustable_hxa7241_2007.html,
November 2007.

[7] X. Yan, T. Tang, Y. Deng, J. Du, and X. Yang, “Evaluation of tran-
scendental functions on imagine architecture,” in Parallel Processing,
2007. ICPP 2007. International Conference on, Sept 2007, pp. 53–
53.

[8] Z. Hussain, “Exponent processing systems and methods,” Patent
Grant US7 912 883, 3 22, 2011. [Online]. Available: http:
//www.google.com/patents/US7912883

[9] K. Azadet, J. G. Chen, S. Hijazi, and J. Williams, “Digital
signal processor having instruction set with an exponential function
using reduced look-up table,” Patent Application US20 100 198 894,
08 5, 2010. [Online]. Available: http://www.google.com/patents/
US20100198894

[10] IEEE Computer Society, “IEEE standard for floating-point arith-
metic,” IEEE Std 754-2008, pp. 1–70, Aug 2008.

[11] N. N. Schraudolph, “A fast, compact approximation of the exponen-
tial function,” Neural Comput., vol. 11, no. 4, pp. 853–862, 1999.

[12] G. C. Cawley, “On a fast, compact approximation of the exponential
function,” Neural Comput., vol. 12, no. 9, pp. 2009–2012, 2000.

[13] J. Milano and P. Lembke, “IBM system Blue Gene solution: Blue
Gene/Q hardware overview and installation planning,” IBM, Tech.
Rep. SG24-7872-01, May 2013.

[14] S. Vetter, G. Anselmi, B. Blanchard, Y. Cho, C. Hales, and
M. Quezada, “IBM Power 750 and 755 (8233-E8B, 8236-E8C)
technical overview and introduction,” IBM, Tech. Rep. REDP-4638-
00, April 2012.

