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 The percentage of memories in today’s systems 
is constantly increasing   
 Dynamic Memories – increased density 
 Static Memories  - faster, no refresh power

 The high density requirements press for 
aggressive scaling of transistor sizes
 Worsening of parametric variations
 Worsening of retention time in DRAMs

 More read, write, access failures 

 The need for energy efficient and extended battery 
lifetime asks for scaled supply voltages
 Memories become more prone to failures
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 Overdesign by adding preventive guardbands based on worst-case conditions 
assumed at design time
 Up-scale voltage and/or size-up the transistors of all bit-cells   
 Refresh DRAM more frequently than required based on the worst case cell

 Add redundant mechanisms for detecting and correcting every single error
 Error correcting codes

Power, performance and area overheads for all 

manufactured memory chips, even the good ones

 Each manufactured die is subject to different 

error pattern (number and location of errors)

 Worst case cell is used for guardbanding

Different instances of same 
designed memory

Need for alternative paradigms that relax the error-free requirements 
=> Approximate computing exploiting application error-resilience 



 Potential for Energy Savings by Relaxing Worst-Case Guardbands
 Analysis of the DRAM retention time variability and traditional robust design

 Energy savings by relaxing the worst-case and error-free requirements

 Achieving graceful degradation for enabling and promoting approximate 
storage  

 Alternative Error Mitigation Mechanisms 

 Conclusion  
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 Data integrity can be guaranteed for a limited 
time period

 Avoid retention-time violation by frequent 
power-hungry refresh cycles

 Silicon measurements indicated large 
variability (2 orders) of retention time across 
all manufactured dies of a 2kb array

 Global refresh rate is determined 
by the WORST cell of all dies  
 Pessimistic performance
 Large energy waste
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 3x difference in refresh power

 Large energy savings by setting the 
refresh independently for each die     
 Extra cost for testing

 New criterion for setting the RT such 
that a limited number of errors is 
allowed

 Take advantage of the data 
integrity/refresh power trade offs

‘Approximate’ storage can lead to large power savings  
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 Approximate storage can be useful only if the allowed number of errors are 
ensured to be low leading to minimum quality degradation

 The memory performance (retention time) need to scale gracefully 
rather than abruptly such that tolerating few errors lead to large savings   

 Potential for shaping the distribution and achieving graceful degradation by 
using circuit level techniques (e.g. body biasing)
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 Utilizing a paradigm shift to approximate storage can lead to
 Power savings by allowing less frequent refresh cycles, allowing the few 

resulting errors to be tolerated by the application

 Yield enhancement by not discarding the dies that do not meet the 
minimum retention time and have few errors



 Potential for Energy Savings in DRAM 
 Analysis of the retention time variability and conventional robust design

 Energy savings by relaxing the worst-case and error-free requirements

 Achieving graceful degradation for enabling and promoting approximate 
storage  

 Alternative Error Mitigation Mechanisms
 A Statistical correction scheme

 Application to communication systems 

 Error Mitigation through But-Shuffling

 Conclusion
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 Individual, single bit-flips can cause errors with very high magnitude 

 Traditional schemes target the detection and correction of every single fault

 Approximate Paradigm: Graceful performance degradation 
 Requires confinement of errors (not necessarily correction)

 Main idea: 
 Detect errors (e.g., single-error detecting codes or sense amplifiers with 

marginal-read detection)
 Substitute erroneous data with a “good estimate” -> based on data statistics

Examples for side information:
• Signal: mean, variance, PDF
• Hardware: basic ECC for error 

detection, tracking access 
time/retention time



 Example: A coded communication system with 10% errors in the memory that 
stores the LLRs (reliability indicators) 

 Faulty LLRs are corrected during read 
based on estimated mean values

 Two pieces of side information
 Receive SNR (channel conditions)
 Marginal-read for bit-cells containing 

the sign bit 

 BER improves significantly

 The overhead of classical ECC can 
be reduced by 28% in a 9.6Kb array 

LLR Correction
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 Main Idea: Identify failing bit locations during runtime and store bits of lower 
significance (LSB) in those locations by shifting appropriately the bits 

 Up-to 83% power, 89% area, 77% performance savings in 28nm                                                                    
vs a (39,32) SECDED ECC  

 For 3 evaluated applications (Elasticnet, 
PCA and KNN) we observed 10%, 0.2% 
and 7% error in the output quality 
compared to the fault-free cases

Faulty cells 
store LSBs

Faulty

Correct



 Application error resilience can be exploited in memories for limiting the 
overheads of traditional fault tolerant mechanisms 

 Relaxing the worst case retention time assumptions and the error free 
requirements in DRAMs can lead to significant energy savings

 The benefits of approximate computing can increase by ensuring graceful  
quality/performance degradation 

=> In DRAM the retention time distribution can be shaped appropriately through   

known circuit techniques  such as body bias

=> The impact of allowed errors can be minimized through low cost error 

mitigation mechanisms that can exploit the statistical properties of various 

applications and help save considerable power   
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