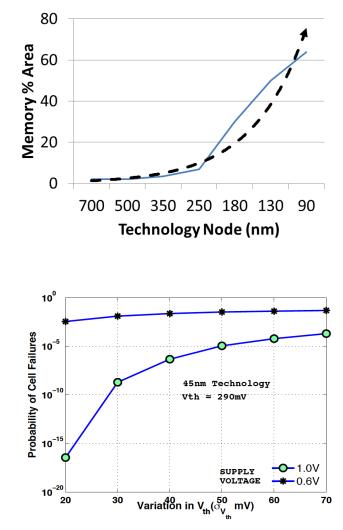
Exploiting Application Error Resilience for Energy Savings in Memories

Georgios Karakonstantis^{1,2}

Adam Teman¹, Shrikanth Ganapathy¹, Andreas Burg¹

¹Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland ²Queen's University Belfast, U.K.



WAPCO Amsterdam 19/1/15

Memories in Nanometer Nodes

- The percentage of memories in today's systems is constantly increasing
 - Dynamic Memories increased density
 - Static Memories faster, no refresh power
- The high density requirements press for aggressive scaling of transistor sizes
 - Worsening of parametric variations
 - Worsening of retention time in DRAMs
 - More read, write, access failures
- The need for energy efficient and extended battery lifetime asks for scaled supply voltages
 - Memories become more prone to failures

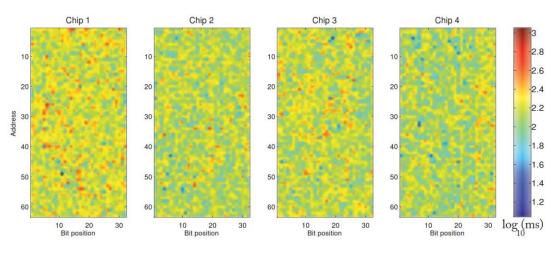
Traditional Mechanisms for Robust Operation

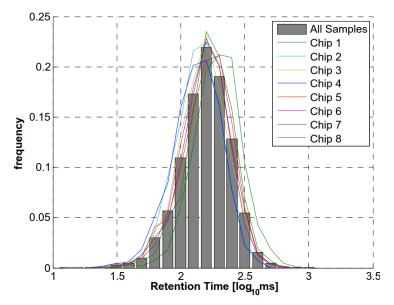
- Overdesign by adding preventive guardbands based on worst-case conditions assumed at design time
 - Up-scale voltage and/or size-up the transistors of all bit-cells
 - Refresh DRAM more frequently than required based on the worst case cell
- Add redundant mechanisms for detecting and correcting every single error
 - Error correcting codes
- ▲ Power, performance and area overheads for all manufactured memory chips, even the good ones
 - Each manufactured die is subject to different error pattern (number and location of errors)
 - Worst case cell is used for guardbanding

Different instances of same designed memory

Need for alternative paradigms that relax the error-free requirements => Approximate computing exploiting application error-resilience

Outline

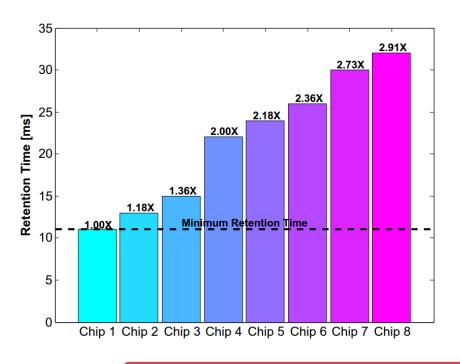

Potential for Energy Savings by Relaxing Worst-Case Guardbands

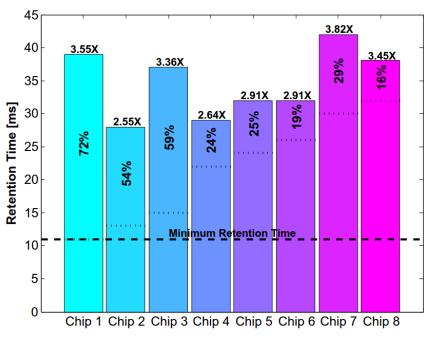

- Analysis of the DRAM retention time variability and traditional robust design
- Energy savings by relaxing the worst-case and error-free requirements
- Achieving graceful degradation for enabling and promoting approximate storage
- Alternative Error Mitigation Mechanisms

Conclusion

DRAM: Retention Time Variability & Conventional Robust Design

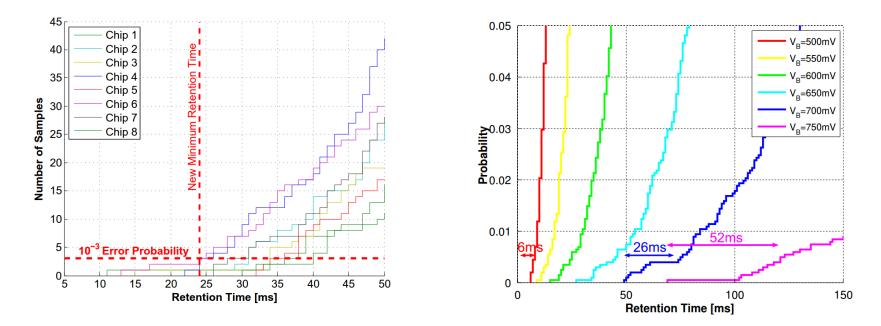
- Data integrity can be guaranteed for a limited time period
- Avoid retention-time violation by frequent power-hungry refresh cycles
- Silicon measurements indicated large variability (2 orders) of retention time across all manufactured dies of a 2kb array



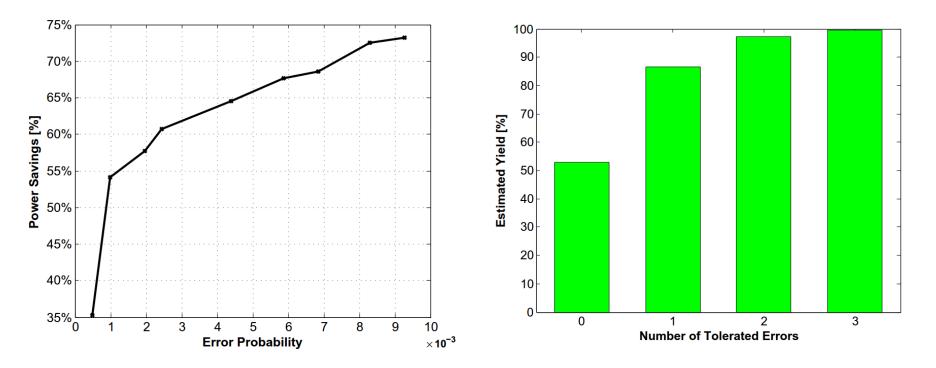

- Global refresh rate is determined by the WORST cell of all dies
 - Pessimistic performance
 - Large energy waste

Power Savings by Relaxing the Worst Case Assumptions and Error-Free Requirements

- 3x difference in refresh power
- Large energy savings by setting the refresh independently for each die
 - Extra cost for testing


- New criterion for setting the RT such that a limited number of errors is allowed
- Take advantage of the data integrity/refresh power trade offs

'Approximate' storage can lead to large power savings


Achieving Graceful Degradation for Enabling Approximate Storage

- Approximate storage can be useful only if the allowed number of errors are ensured to be low leading to minimum quality degradation
- The memory performance (retention time) need to scale gracefully rather than abruptly such that tolerating few errors lead to large savings
- Potential for shaping the distribution and achieving graceful degradation by using circuit level techniques (e.g. body biasing)

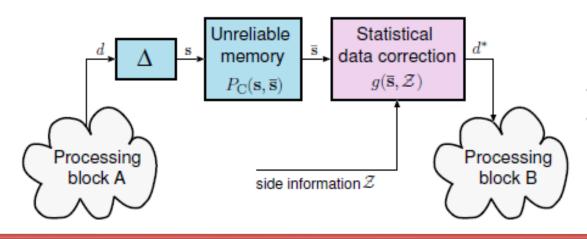
Power Savings and Yield Enhancement

- Utilizing a paradigm shift to approximate storage can lead to
 - Power savings by allowing less frequent refresh cycles, allowing the few resulting errors to be tolerated by the application
 - Yield enhancement by not discarding the dies that do not meet the minimum retention time and have few errors

Outline

Potential for Energy Savings in DRAM

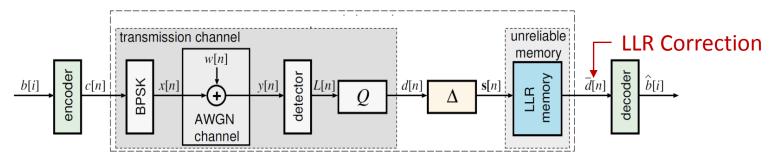
- Analysis of the retention time variability and conventional robust design
- Energy savings by relaxing the worst-case and error-free requirements
- Achieving graceful degradation for enabling and promoting approximate storage

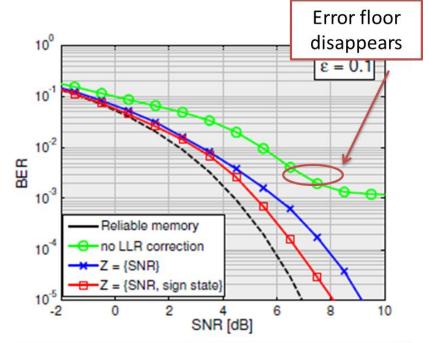

Alternative Error Mitigation Mechanisms

- A Statistical correction scheme
- Application to communication systems
- Error Mitigation through But-Shuffling

Conclusion

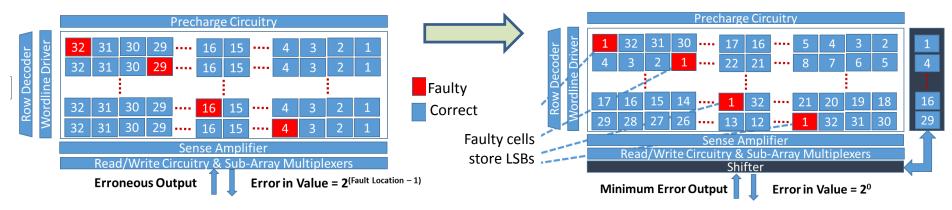
A Statistical Correction Scheme


- Individual, single bit-flips can cause errors with very high magnitude
- **Traditional** schemes target the detection and correction of every single fault
- **Approximate Paradigm**: Graceful performance degradation
 - Requires confinement of errors (not necessarily correction)
- Main idea:
 - Detect errors (e.g., single-error detecting codes or sense amplifiers with marginal-read detection)
 - Substitute erroneous data with a "good estimate" -> based on data statistics

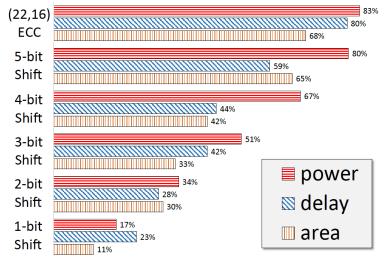

Examples for side information:

- Signal: mean, variance, PDF
- Hardware: basic ECC for error detection, tracking access time/retention time

Statistical Error Correction: Application to Communication Systems



- Example: A coded communication system with 10% errors in the memory that stores the LLRs (reliability indicators)
- Faulty LLRs are corrected during read based on estimated mean values
- Two pieces of side information
 - Receive SNR (channel conditions)
 - Marginal-read for bit-cells containing the sign bit
- BER improves significantly
- The overhead of classical ECC can be reduced by 28% in a 9.6Kb array



Error Mitigation through Bit-Shuffling

Main Idea: Identify failing bit locations during runtime and store bits of lower significance (LSB) in those locations by shifting appropriately the bits

Up-to 83% power, 89% area, 77% performance savings in 28nm

vs a (39,32) SECDED ECC

 For 3 evaluated applications (Elasticnet, PCA and KNN) we observed 10%, 0.2% and 7% error in the output quality compared to the fault-free cases

Conclusion

- Application error resilience can be exploited in memories for limiting the overheads of traditional fault tolerant mechanisms
- Relaxing the worst case retention time assumptions and the error free requirements in DRAMs can lead to significant energy savings
- The benefits of approximate computing can increase by ensuring graceful quality/performance degradation
 - => In DRAM the retention time distribution can be shaped appropriately through known circuit techniques such as body bias
 - => The impact of allowed errors can be minimized through low cost error mitigation mechanisms that can exploit the statistical properties of various applications and help save considerable power

Thank you !

FP7 FET-OPEN SCoRPiO http://www.scorpio-project.eu

FP7 Marie-Curie Fellowship Grant DARE https://sites.google.com/site/daresystemeu