Evolutionary Computing in Approximate Circuit Design and Optimization

Lukáš Sekanina and Zdeněk Vašíček Faculty of Information Technology Brno University of Technology sekanina@fit.vutbr.cz

WAPCO 2015, Amsterdam January 19, 2015

IT4Innovations national 18#80 supercomputing center@#01%101

How to approximate digital circuits?

- Technology-oriented techniques
 voltage over-scaling, over-clocking ...
- Functional approximation
 - > Original function F is replaced by G whose implementation leads to
 - energy/delay/area reduction
 - non-zero error

Motivation

- Methods for functional approximation
 - > Manual
 - > Automatic (= some heuristics used)
 - SALSA (DAC 2012)
 - SASIMI (DATE 2013)
 - ABACUS (DATE 2014)
 - ASLAN (DATE 2014)
 - ...
 - Evolutionary algorithm (EA)-based methods Hypothesis: Much better approximations can be discovered than conventional methods can provide.

- It is natural!
 - > AC: partially working circuits are sought
 - > EA: genetic improving of partially working circuits
- EAs are excellent in multi-objective design
- Constraints are easily handled.
- The original (accurate) circuit is not required.
- Problems of evolutionary design:
 - > scalability
 - runtime

Cartesian genetic programming (CGP) [Miller JF 1999]

- Example: CGP parameters
 - n_r=3 (#rows)
 - $n_c = 3$ (#columns)
 - n_i = 3 (#inputs)
 - $n_o = 2$ (#outputs)
 - n_a = 2 (max. arity)
 - L = 3 (level-back parameter)
 - $\Gamma = \{NAND^{(0)}, NOR^{(1)}, XOR^{(2)}, AND^{(3)}, OR^{(4)}, NOT^{(5)}\}$

NETLIST = GENOTYPE

Typical fitness function (circuit functionality):

$$f = \sum_{i=1}^{K} |yi - wi|$$
Desired response
Circuit response

Example evolutionary optimization (no approx.)

100 combinational circuits (≥15 inputs) - IWLS2005, MCNC, QUIP benchmarks

Heavily optimized by ABC

1: alcom ($N_G = 106$ gates; $N_{PI} = 15$ inputs; $N_{PO} = 38$ outputs)

100: ac97ctrl ($N_G = 16,158; N_{Pl} = 2,176; N_{PO} = 2,136$)

Minimization of the number of gates

CGP + SAT solver + circuit simulation

Y-axis: Gate reduction w.r.t. ABC after 15 minutes, 34% on average

▲ Gate reduction w.r.t. ABC after 24 hours

[Vašíček, Sekanina: Genetic Programming and Evolvable Machines 12(3), 2011; DATE 2011; EuroGP 2015]

Much better results expected for approximate circuits!

Approximate circuit design by CGP

- Approximate circuit design problem is seen as a search problem.
 - Power consumption, error, area and delay are conflicting design objectives
 - Single-objective CGP: n runs are needed to obtain n points on the Pareto front
 - Multi-objective CGP: Pareto front is the result of a single CGP run.
- Methodology:
 - It is assumed that power consumption is highly correlated with the area. Hence only the area is estimated in the fitness function (which is fast).
 - Power consumption is calculated for evolved circuits at the end of evolution.

Approximate circuit design by CGP

- Error-oriented (single-objective) method
 - CGP gradually degrades a fully functional circuit until a circuit with a <u>required error</u> is obtained. Then, the area (and so power consumption) is minimized for this error.
- Resources-oriented (single-objective) method
 - CGP is used to minimize the error, but only limited resources (components) are provided, insufficient for constructing a fully functional circuit.
- Multi-objective optimization
 - > Area, delay, and error are optimized together.

Resources-oriented approximation: median circuits

Vasicek, Sekanina: IEEE Tr. on Evol. Comp, 2015 – in press

The evolved correct median circuits

		po	ower [m	W]	area [-]			delay [ns]		
w	n_c	best	worst	mean	best	worst	mean	best	worst	mean
9	31	10.8	12.9	12.6	2314.2	2836.7	2750.8	285.9	429.7	295.1
25	221	72.4	72.4	72.4	16497.7	16497.7	16497.7	539.5	539.5	539.5

 \Box reference solutions (power consumption estimated using SIS)

FIT

Multi-objective CGP: 8-bit multiplier

- 3 criteria
 - > average error (if E >2.5%, the solution is not accepted)
 - relative area
 - > delay
- First scenario: single-objective CGP with weight criteria
 - > $(w_{error}; w_{area}; w_{delay}) = (0.12; 0.5; 0.38)$
 - > λ = 5; 50 generations; 20 runs (20 error levels) \Rightarrow 5000 evaluations
- Second scenario: multi-objective CGP (NSGA-II)
 - $\succ~\lambda$ = 50 , 100 generations \Rightarrow 5000 evaluations

Multi- vs. single-objective CGP: 8 bit multiplier

Unfair comparison: Approximate 8-bit multiplier

- Problems:
 - > Different original (accurate) multipliers.
 - > Different fabrication technology.
 - > SW implementations of the methods are not available.
- Why is CGP good? Conventional methods generate and evaluate only several candidate solutions while CGP produces thousands of candidate solutions.

Conclusions

- Approximate circuit design can be formulated as multiobjective search problem and solved by EA
 - The EA methods automatically provide Pareto fronts and probably much better compromised solutions than the state of the art methods.
 - The EA methods estimate key circuit parameters during the evolution to accelerate the whole design process.
- Benchmark problems (with reference results) are needed!
- Future research
 - > scalability issues, computation time reduction
 - > Applying EAs in other domains of approximate computing

Thank you for your attention!

Lukáš Sekanina and Zdeněk Vašíšek

Faculty of Information Technology Brno University of Technology sekanina@fit.vutbr.cz

IT4Innovations national 15#80 supercomputing center@#01%101