

Exploiting approximate computing methods in FPGAs to accelerate stereo correspondence algorithms

Michael Bromberger, Wolfgang Karl and Vincent Heuveline

Chair for Computer Architecture and Parallel Processing (CAPP) / Institute of Computer Science & Engineering (ITEC) WAPCO 2015

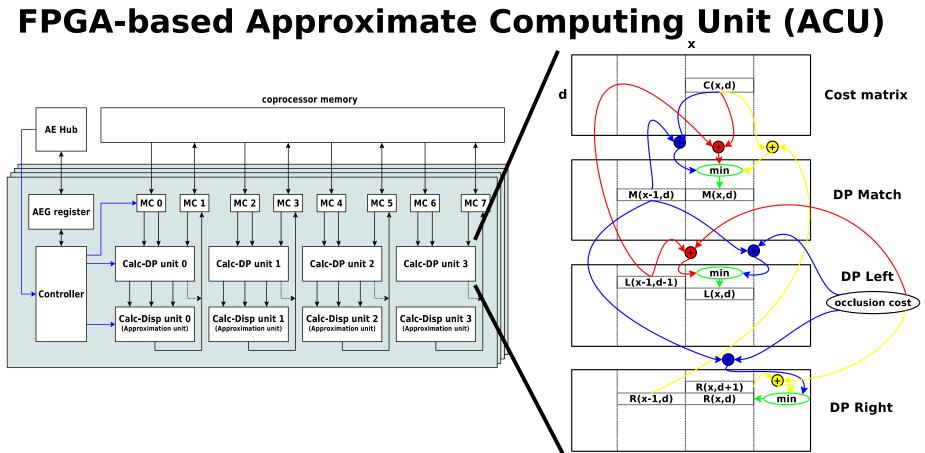
Motivation

[http://rack.3.mshcdn.com]

[http://recognition-systems.com/]

[http://www.electronicproducts.com]

- The world's amount of data is doubling every two years
- 23 % of this data is useful to tag and analyze (according to IDC)
- Computer vision and machine learning algorithms are often used
- Such applications can benefit from Approximate Computing (AC)
- AC is applicable on different levels
 - Applications, software libraries, ISA, hardware
- Our case study: stereo correspondence algorithms


Stereo correspondence algorithm

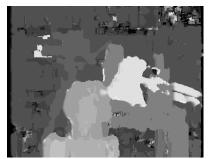
- Calculates depth map between two rectified images
 - Map contains information about the distance of objects to the camera
- Considered algorithm is based on dynamic programming (DP)
- Do for each image/depth map row:
 - 1. Calculating cost matrix using Sum-of-Absolute-Differences (SAD)
 - 2. Use DP to calculate three matrices (Match, Left occluded, Right occluded)
 - 3. Backtracking step determines the best disparity values for the current row

Approach

Port the DP matrix calculation (step 2 and 3) to a FPGA

- exploiting the parallel capabilities of a FPGA
- Achieved by
 - A pipeline structure for calculating several DP columns
 - Calculating different DP matrices in parallel
- Remove time-consuming backtracking step
 - Avoids storage of the entire DP matrices
 - No time-consuming off-chip memory accesses required
- Local decision for finding the best depth map pixel value
 - Enables a streaming architecture
 - Pixel value (disparity) is determined by the minimum value in each DP column
 - Drawback: reducing accuracy of the algorithm

- Calc-DP unit calculates 3 columns for each DP matrix concurrently
- FPGA determines 4 depth map rows in parallel by 4 Calc-DP units
- e.g. the Convey HC-1 includes 4 FPGAs \rightarrow 16 rows
- Depth map is calculated by a single call to avoid setup costs


Evaluation I: different depth maps

Tsukuba image

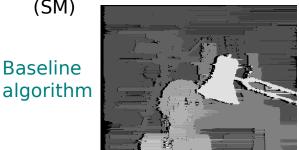
Ground truth

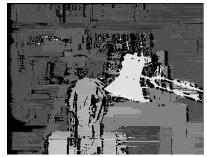
Sum of absolute differences (SM)

Simulated Annealing (SM)


Scan-line optimization (SM)

Graph cut (SM)


DTAggr-P


CSM

SM: algorithm is part of Stereo matcher framework

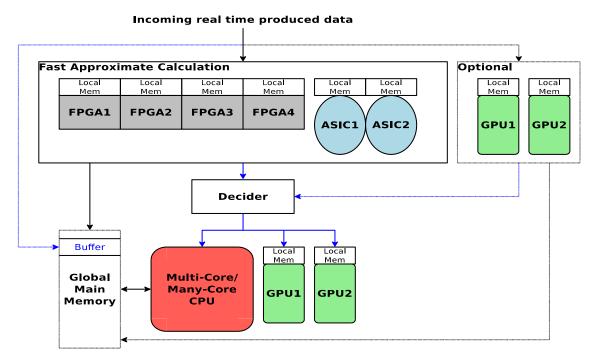
DTAggr-P, CSM are published in the Middlebury Evaluation

Dynamic Programming (SM)

Proposed FPGA-based AC unit

Baseline

Karl – Exploiting approximate computing methods in FPGAs ...


Evaluation II

Average execution time and RMSE for different algorithms calculating a depth map for Tsukuba

	Costs	Aggregation/ Data transfer	Optimization	Total	RMSE (all)
SM-GC	0.07 s	-	159.31 s	159.32 s	1.4
SM-DP	0.07 s	-	0.14 s	0.22 s	1.78
SM-SAD	0.06 s	0.03	0.01 s	0.11 s	1.78
SM-SO	0.07 s	-	0.14 s	0.21 s	1.88
SM-SA	0.07 s	-	258.51 s	258.59 s	2.03
FPGA-AC	0.05 s	3.41 ms	381 μs	0.06 s	3.34

ACU is 367x faster than the original DP-based optimization
The RMSE is only increased by a factor of 2
ACU optimization step achieves 26 fps for 4096x4096 images

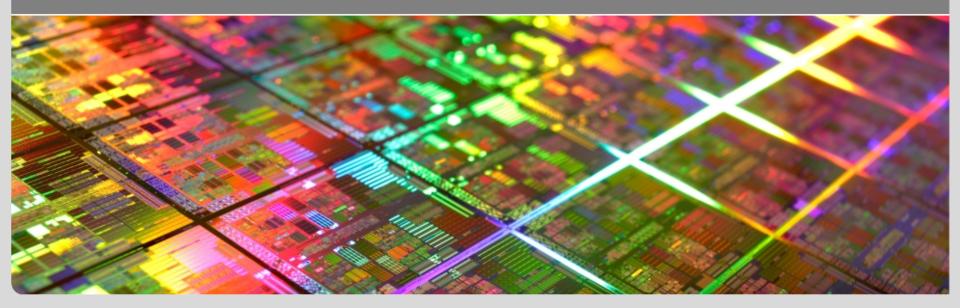
Integration of the ACU into a hybrid system

- Fast ACU allows real time processing
- Decider "evaluates" if the result is exact enough
- Other units
 - can recalculate the result if it is required
 - Calculate further step(s) of the overall algorithm

Conclusion and future work

Integration of AC into a stereo correspondence algorithm

- **FPGAs** are well suited to implement AC hardware
- Removing the time-consuming backtracking step
 - Enables a streaming architecture
 - Avoids accesses to off-chip memory
- A hybrid system (CPU + FPGA) combines
 - Traditional "exact" computation (CPU)
 - Approximate Computing Hardware (FPGA)
- Future Work
 - Consideration of further AC strategies for the FPGA architecture
 - Developing a domain-specific AC framework for hybrid systems



Exploiting approximate computing methods in FPGAs to accelerate stereo correspondence algorithms

Michael Bromberger, <u>Wolfgang Karl</u> and Vincent Heuveline

Chair for Computer Architecture and Parallel Processing (CAPP) / Institute of Computer Science & Engineering (ITEC) WAPCO 2015

