
A Programming Model and Runtime 
System for Significance-Aware 

Energy-Efficient Computing

V. Vassiliadis1,2, K. Parasyris1,2, C. Chalios3, 

C. Antonopoulos1,2, S. Lalis1,2, N. Bellas1,2,

H. Vandierendonck3 D. Nikolopoulos3

1Department of Electrical and Computer Engineering 

University of Thessaly  

2Centre for Research and Technology Hellas 

(CE.R.T.H.), Greece 

3Queen’s University Belfast

United Kingdom



Motivation

•Energy consumption has become a major barrier.

•Many applications are adaptive to approximations.

Different parts of the same application have different 
“significance” for the quality of the end-result. 

Multimedia, scientific computing, communication, visualization 
apps can be approximated.

iDCT algorithm with varying
degree of accuracy.



Objectives

We would like to provide mechanisms that allow the 
programmer to:

• Express the significance of computations in terms 
of their contribution to the quality of the end result;

• Specify approximate alternatives for selected 
computations;

• Express parallelism, beyond significance;

• Control the balance between energy consumption 
and the quality of the end-result.



Programming Model Example 

void DCT(unsinged char *img, double *dct_out){

/* Significance look up table for each 2x4 sub-block */

float sgnf_lut[] = {1.0, 0.9, 0.7, 0.3, 0.8, 0.4, 0.3, 0.1};

for each 2x4 sub-block K { 

#pragma omp task label(dct) in(img) out(dct_out)
significance(expr(sgnf_lut[K])) approxfun(NULL)

dct_task(...);

}

#pragma taskwait label(dct) ratio(0.8)

}



Express Parallelism
void DCT(unsinged char *img, double *dct_out) {

float sgnf_lut[] = {1.0, 0.9, 0.7, 0.3, 0.4, 0.8, 0.4, 0.3, 0.1};

for each 2x4 sub-block K { 

#pragma omp task label(dct) in(img) out(dct_out)
significance(expr(sgnf_lut[K])) approxfun(NULL)

dct_task(...);

}

#pragma taskwait label(dct) ratio(0.8)

}

1) Task based programming model. 
2) Parallelism is implicitly declared by 

annotating a tasks memory footprint



Approximation Extensions
void DCT(unsinged char *img, double *dct_out) {

float sgnf_lut[] = {1.0, 0.9, 0.7, 0.3, 0.8, 0.4, 0.3, 0.1};

for each 2x4 sub-block K { 

#pragma omp task label(dct) in(img) out(dct_out)
significance(expr(sgnf_lut[K])) approxfun(NULL)

dct_task(...);

}

#pragma taskwait label(dct) ratio(0.8)

}

Subscribe a task into a group of 
tasks identified by a string

Approximate alternative for 
selected functions.

Define the significance of computations based 
on their impact on the output’s quality.



Synchronization Extensions
void DCT(unsinged char *img, double *dct_out){

/* Significance look up table for each 2x4 sub-block */

float sgnf_lut[] = {1.0, 0.9, 0.7, 0.3, 0.8, 0.4, 0.3, 0.1};

for each 2x4 sub-block K { 

#pragma omp task label(dct) in(img) out(dct_out)
significance(expr(sgnf_lut[K])) approxfun(NULL)

dct_task(...);

}

#pragma taskwait label(dct) ratio(0.8)

}

Wait for all tasks subscribed in the 
“dct” group

Control the balance 
between energy 

consumption and 
the quality of the 
end-result using 
a single clause.



Runtime Support Approximate 
Computing

The runtime should respect:

•The significance of each task.

•The fraction of tasks that may be executed approximately for 
each task group.

Obstacles:

•No  information on how many tasks will be issued in a task 
group.

•Unknown distribution of significance levels in each task group.



Significance Aware Scheduling Policies

Global Task Buffering (GTB):

 Buffers issued tasks and analyzes their properties

Local Queue History (LQH):

 Estimates the distribution of significance levels using per-
worker local information.

Policy 1st Concern Execution 
Decision

GTB Quality Main Thread

LQH Performance Worker Thread



Experimental Evaluation

Benchmarks used for the evaluation. For all cases, the degree of approximation is given by 
the percentage of tasks executed approximately.

We compare our results with executions using perforation:

•Perforation is a compiler technique that removes loop-steps.

Benchmark Quality
Approximation Degree

Mild Mid Aggressive

Sobel PSNR(db) 10% 30% 80%

DCT PSNR(db) 10% 40% 80%



DCT
Energy (Joules) Quality (PSNR(db))

Aggressive perforated outputAggressive significance aware output



Sobel
Energy (Joules) Quality (PSNR(db))

Aggressive perforated outputAggressive significance aware output



Conclusions

•Developed a programming model that supports 
approximate computing at the granularity of tasks.

•Introduced extensions to a task-based runtime system to 
exploit significance information.

•Presented Significance-centric scheduling policies



Questions



Acknowledgements
This work has been partially supported by the “Aristeia II” action (Project 
“Centaurus”) of the operational program Education and Lifelong Learning 

and is co-funded by the European Social Fund and Greek national resources.

This work has been partially supported by the EC within the 7th

Framework Program under the FET-Open grant agreement SCoRPiO, 
grant number 323872.


