A Programming Model and Runtime
System for Significance-Aware
Energy-Efficient Computing

V. Vassiliadis®?, K. Parasyris!-?, C. Chalios3,
C. Antonopoulos??, S. Lalist?, N. Bellas'?,
H. Vandierendonck3 D. Nikolopoulos3

!Department of Electrical and Computer Engineering
University of Thessaly

2Centre for Research and Technology Hellas
(CE.R.T.H.), Greece

3Queen’s University Belfast
United Kingdom

Motivation

*Energy consumption has become a major barrier.

*Many applications are adaptive to approximations.

» Different parts of the same application have different
“significance” for the quality of the end-result.

» Multimedia, scientific computing, communication, visualization
apps can be approximated.

iDCT algorithm with varying
degree of accuracy.

——% Power Savings
-&- Quality (PSNR)

[——— 4
Approximate operations
and voltage scaling increase

Objectives

We would like to provide mechanisms that allow the
programmer to:

* Express the significance of computations in terms
of their contribution to the quality of the end result;

* Specify approximate alternatives for selected
computations;

* Express parallelism, beyond significance;

* Control the balance between energy consumption
and the quality of the end-result.

Programming Model Example

void DCT(unsinged char *img, double *dct_out){
/* Significance look up table for each 2x4 sub-block */
float sgnf_lut[] ={1.0, 0.9, 0.7, 0.3, 0.8, 0.4, 0.3, 0.1};
for each 2x4 sub-block K {

#tpragma omp task label(dct) in(img) out(dct_out)
significance(expr(sgnf_lut[K])) approxfun(NULL)
dct_task(...);

}
#pragma taskwait label(dct) ratio(0.8)

Express Parallelism

void DCT(unsinged char *img, double *dct_out) {
1) Task based programming model.

2) Parallelism is implicitly declared by
annotating a tasks memory footprint

float sgnf _lut[] = {1.0, 0.9/0.7, 0.3,06.4, 0.8, 0.4, 0.3, 0.1};
for each 2x4 sub-block K/{
#poragma omp task label(dct) in(img) out(dct_out)
significance(expr(sgnf_lut[K])) approxfun(NULL)
dct_task(...);

}
#pragma taskwait label(dct) ratio(0.8)

App

roximation Extensions

void DCT(unsinged char *img, double *dct_out) {

Subscribe a task into a group of

float sgnf_|

tasks identified by a string
ut[] = {1.0, 0.9, 017, 0.3,0.8,0.4, 0.3, 0.1};

for each 2x4 sub-block K {

gma omp task label(dct) in(img) out(dct_out)

significance(expr(sgnf lut[K])) approxfun(NULL)

Hpra
dct
}
Hpragma ta

1{ask(...);

skwait label(dct) ratio(0.8)

Approximate alternative for
selected functions.

<€

Define the significance of computations based

on their impact on the output’s quality.

Synchronization Extensions

void DCT(unsinged char *img, double *dct_out){
/* Significance look up table for each 2x4 sub-block */
float sgnf_lut[] ={1.0,0.9,0.7,0.3,0.8, 0.4, 0.3, 0.1};
for each 2x4 sub-block K {
#pragma omp task label(dct) in(img) out(dct_out)
significance(expr(sgnf_lut[K])) approxfun(NULL)

dct_task(...); Control the balance
} between energy
consumption and
the quality of the
} end-result using

#pragma taskwait label(dct) ratio(0.8)

a single clause.

Wait for all tasks subscribed in the

“dct” group

Runtime Support Approximate
Computing

The runtime should respect:
*The significance of each task.

*The fraction of tasks that may be executed approximately for
each task group.

Obstacles:

*No information on how many tasks will be issued in a task
group.

*Unknown distribution of significance levels in each task group.

Significance Aware Scheduling Policies

Global Task Buffering (GTB):

» Buffers issued tasks and analyzes their properties

Local Queue History (LQH):

» Estimates the distribution of significance levels using per-
worker local information.

Policy 1t Concern Execution
Decision

GTB Quality Main Thread

LQH Performance Worker Thread

Experimental Evaluation

Approximation Degree

Benchmark Quality

Mild Mid Aggressive
Sobel PSNR(db) 10% 30% 80%
DCT PSNR(db) 10% 40% 80%

Benchmarks used for the evaluation. For all cases, the degree of approximation is given by
the percentage of tasks executed approximately.

We compare our results with executions using perforation:
*Perforation is a compiler technique that removes loop-steps.

DCT

100 Energy (Joules) 10 Quality (PSNR(db))
75 30
50 20
25 10
0 0
Aggr Medium Mild Aggr Medium Mild
mesm LQH mmmm GTB (User Defined) GTB (Max Buffer) == Perforation ==p== Accurate

Aggrwessive significance aware output

50

30

20

10

Sobel

Energy (Joules)
]

Aggr Medium Mild

aw LQH mmmm GTB (User Defined)

Quality (PSNR(db))
120

80
60

© e
0

Aggr Medium

GTB (Max Buffer) ==#= Perforation ==p=m Accurate

Mild

Conclusions

*Developed a programming model that supports
approximate computing at the granularity of tasks.

*Introduced extensions to a task-based runtime system to
exploit significance information.

*Presented Significance-centric scheduling policies

Questions

Acknowledgements

This work has been partially supported by the “Aristeia II” action (Project
“Centaurus”) of the operational program Education and Lifelong Learning
and is co-funded by the European Social Fund and Greek national resources.

OPERATIONAL PROGRAMME
i EDUCATION AND LIFELONG LEARNING / NSRF
* *
- investi owledge Society] E-2007 2013
* Kk programme for developm:

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS, CULTURE & SPORTS ~ EUROPEAN SOCIAL FUND

Europeanumon MANAGING AUTHORITY
European Social Fund

Co-financed by Greece and the European Union

This work has been partially supported by the EC within the 7t
Framework Program under the FET-Open grant agreement SCoRPIO,
grant number 323872.

SCoRPi0

Significance-Based Computing for

Reliability and Power Optimization SEVENTH FRAMEWORK

PROGRAMME

