
Approximate
Computing in

Low Power GPUs

Georgios Keramidas

January 2015

Title: Clumsy Value Cache: An Approximate
Memoization Technique for Mobile
GPU Fragment Shaders

By: Georgios Keramidas, Chrysa Kokkala, and Iakovos Stamoulis

Jan. 2015 1Georgios Keramidas / Think Silicon Ltd.

• Who are we?
– Think Silicon is a privately held company founded in 2007

• What we do?
– Design and Develop low power GPU IP semiconductor cores

for mobile/embedded devices

• Market
– Focus is the broader IoT and specifically the “Wearable”

market

• Our mission
– Support and collaborate with our customers to create mutual

and enduring values in each phase of the project

Ultra Low Power GPUs for Wearables

Jan. 2015 2Georgios Keramidas / Think Silicon Ltd.

Moore’s Law in Mobile GPUs

Applications in next 5 years will need 4-5x the current GPU perf.

Display resolution exponential increase (4K displays are here)

BUT… Power roughly under the same power budget (few hundreds milliwatts)

IoT GPUs: few mWatts (< 3 mW) are devoted to graphics

10 years
ago

5 years
ago

NOW in 5
years

in 10
years

GPU performance

GPU Power

Display ResolutionLO
G

 S
C

A
LE

Jan. 2015 3Georgios Keramidas / Think Silicon Ltd.

New smart low power techniques must be found

Smartphone
GPUs

Evolution in Graphics

4

Then

• If YES we can reduce power by simply “remembering” the
results from previous calculations

Many areas with the
same or almost the

same colours

Redundancy heard of graphics applications

Now

Pixels with same
colours same
calculations with

same inputs ?

4Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Value Memoization or Value Reuse or Work Reuse or
Value Cache

• Pros: Simple design a memory array + some logic

Remembering Previous Calculations ???

Jan 2015 5Georgios Keramidas / Think Silicon Ltd.

• For each new pixel, first the Value Cache is checked using input colours
• Match (value cache hit) one local memory access, 8 less costly

computations
• Mismatch (value cache miss) two local memory accesses (VC

lookup + VC update) extra power in the system

• Bad news: Value memoization is not able to pay off
• Corbal et al. Fuzzy memoization for floating point multimedia

applications
• Citron et al. Look It Up or Do the Math: An Energy, Area, and Timing

Analysis of Instruction Reuse and Memoization
• Huang et al. Exploiting Basic Block Value Locality with Block Reuse
• Richardson et al. Exploiting Trivial and Redundant Computation
• Bodik et al. Characterizing coarse-grained reuse of computation
• Sodani et al. Dynamic Instruction Reuse

• Reasons:
– Very large reuse tables required
– Redundancy or value reuses are limited
– In CPU-like code, not enough number of blocks of (costly) instructions

• What about graphics?
– Graphics apps and GPU architectures are promising?

Memoization Failed in the Past !!!

25-Mar-14 6Georgios Keramidas / Think Silicon Ltd.

Graphics applications ??? YES

– Computer generated images do have areas with
similar colors

– Value caching will be beneficial

Memoization in Graphics ???

Jan 2015 7Georgios Keramidas / Think Silicon Ltd.

Memoization in Graphics ???

Jan 2015 8Georgios Keramidas / Think Silicon Ltd.

GPU architecture ??? Definitely YES

1. GPU code: data flow-like with a
small number of registers per thread

2. GPU code: limited number of input
registers, always one output register

3. GPU code: not conditional code (in
most of the cases)

4. GPU code: typically 128 bits

5. GPU code: power hungry
instructions e.g., log, rsq, or ex2

6. GPU code: many constant variables

• No need to “remember”
constants

A typical GLSL
fragment shader

• Evaluation of Redundancy & Value Cache in all GPU
instructions
– Result 1: Value cache performance differs among the

instructions depending on instruction type (scalar or
vector and input registers)

– Result 2: Redundancy is limited only 14% on average in
a 32 entries Value Cache

First Results

Jan 2015 9Georgios Keramidas / Think Silicon Ltd.

Average (0-bits):

• 12,96% 8-entries

• 14,21%, 32 entries

Average (8-bits):

• 16,04%, 32 entries

Average (16-bits):

• 40,62%, 32 entries

Average (20-bits):

• 75,95%, 32 entries

• Reduced Accuracy: from full VC matches to
partial matches (partial matches: dynamically
reduce the bits of mantissa)

– Result: VC hit ratio increases exponentially
“accuracy” is the only viable way

First Results using Approximate Matches

Jan 2015 10Georgios Keramidas / Think Silicon Ltd.

Average (0-bits):

• 12,96% 8-entries

• 14,21%, 32 entries

Average (8-bits):

• 16,04%, 32 entries

Average (16-bits):

• 40,62%, 32 entries

Average (20-bits):

• 75,95%, 32 entries

• Evaluation of Value cache with full matches
(Redundancy) in large memoization tables

– Result: Redundancy cannot be captured with
(unrealistically) large tables in groups of instructions

Value Cache in Instruction Groups

11Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Not all instructions must be equally precise
– Result 1: Texture fetches in high precision

– Result 2: Calculations in low precision

What about Image Quality ?

More details can be found in the paper

• Precision reduction in all instructions NO more than 4-bits can be
ignored during partial matches

• Precision reduction ONLY in arithmetic instructions up to 16 bits
can be ignored during partial matches

Precision is reduced
in all instructions

Precision is reduced
only in arithmetic

instructions
(texture fetches in

FULL precision)

12Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Putting all together Compiler (LLVM)-level Methodology to
automatically identify VC blocks in OpenGL fragment shaders

Methodology (in a nutshell):

• Try to find the largest code
segments (VC blocks) excluding
texture fetch instructions or
instructions than contribute to
texture fetches

• Reasoning: in this way, the
precision of the VC block can
be aggressively reduced
(increasing VC hits)

Our Methodology
• VC instructions

– AddEntries places new results in the VC in misses
– LookupEntries retrieves from VC, in hits, or produces misses

13Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Dynamic Value Cache Run-time, feedback-directed mechanism to
control the interplay between precision reduction and QoS
maximizing the value reuse benefits at the same time

VC block selection
methodology 58.7% of
fragment shaders code
encapsulated in VC blocks

• 13.5% reduction in
executed
instructions

• >60% hits in value
cache

• 0.8% image quality
loss

Frame 50 200 300

Quake_4 60 60 60

Doom_3 54 55 54

Prey_Guru_4 54 55 55

UT_2004 64 72 73

Average code coverage: 58.7%

Results

More details can be found in the paper

14Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Value Cache in silicon (in 2 company’s products)

– VC as an extra specialized functional unit in
GPU data path

– VCFU managed by machine instructions
visible to GPU compiler/assembler

– Extension of GPU ISA

– VC instructions as LLVM intrinsic instructions

– Insertion methodology implemented in the
LLVM IR

Practical Issues

Assembly
Produced
By LLVM

Simulation results ==
FPGA results

15Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Contribution: Value Cache mechanism

• Target: Remove redundant, complex arithmetic
operations in OpenGL graphics applications

• VC strongly relies on the concept of approximate
computing by reducing the accuracy of the value
memoization comparisons in a dynamic fashion
– Without using approximate computing techniques

meager or negative benefits observed

• Overall: 13.5% reduction in executing instructions in
modern fragment shaders with a negligible loss in the
quality of the rendered images

Conclusions

16Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

