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Abstract—This work exploits the tolerance of Deep Neural
Networks (DNNs) to reduced precision numerical representations
and specifically, their ability to use different representations
per layer while maintaining accuracy. This flexibility provides
an additional opportunity to improve performance and energy
compared to conventional DNN implementations that use a single,
uniform representation for all layers throughout the network.
This work exploits this property by proposing PROTEUS, a lay-
ered extension over existing DNN implementations that converts
between the numerical representation used by the DNN execution
engines and a shorter, layer specific fixed-point representation
when reading and writing data values to memory be it on-chip
buffers or off-chip memory. When used with a modified layout
of data in memory, PROTEUS can use a simple, low-cost and low
energy conversion unit.

On five popular DNNs, PROTEUS can reduce data traffic
among layers by 41% on average and up to 44% compared
to a baseline that uses 16-bit fixed-point representation, while
maintaining accuracy within 1% even when compared to a single
precision floating-point implementation. When incorporated into
a state-of-the-art accelerator PROTEUS improves energy by 14%
While maintaining the same performance. When incorporated
on a graphics processor PROTEUS improves performance by 1%,
energy by 4% and reduces off-chip DRAM accesses by 46%.

I. INTRODUCTION

A Deep Neural Network, or DNN, is a state-of-the-art
machine learning technique used for difficult tasks like speech
recognition [1] and image classification[2]. DNNs are first
trained over several known examples; then used to classify
new inputs. Training is a more time consuming process, but
is typically done once, and offline. This work focuses on
Classification as it is of more interest to end-users especially
for mobile applications.

Currently, classification quality and applications of classi-
fication are limited by compute performance, memory band-
width and memory capacity [3], [4]. In the current energy-
constrained semiconductor technology era, increasing the pro-
cessing power of computing devices requires decreasing the
energy per operation [5]. Communication accounts for 50%
of the power consumption of a state-of-the-art DNN accelera-
tor [3]. Accordingly, the goals of this work are to decrease the
memory storage and overall energy needed to process DNNs.

While most general purpose software implementations use
single-precision floating point [6], narrower fixed-point repre-

sentations using 16 bits or fewer are often sufficient [3], [7],
[8]. However, existing approaches tend to follow a one-size-
fits-all approach by using a representation long enough to work
well for all computations in a DNN.

In prior work, we found that the required representation
length varies significantly both across networks and between
the different layers of a single network [9]. As a result, the
flexibility of choosing a per layer representation can open up
new opportunities for energy and performance optimizations.

Another recent work also considers different precisions per-
layer in to reduce the area of a custom circuit design [10].
However, this solution lacks the configurability to run different
and larger networks.

We propose PROTEUS (PR) which exploits the aforemen-
tioned DNN property to reduce the data footprint of DNNs
improving energy and processing capability. PR uses a dif-
ferent representation for each layer when storing both the
inter-layer data and weights of a DNN. As a result, PR
reduces on- and off-chip data traffic, improving energy, while
enabling larger DNNs to run on a fixed memory budget. PR
can be implemented as a dynamically configurable, layered
extension over existing DNN compute engines. PR stores
data in memory with the pre-selected per-layer representation
length but performs computation in the native representation,
using a translation layer to convert the between the two. In this
work, we demonstrate PR over a GPU and a state-of-the-art
DNN accelerator.

Simulation results suggest that PR can reduce memory
traffic by 51% on average compared to a 16-bit baseline. For
a state-of-the-art accelerator, PR reduces data traffic by 49%
and overall energy by 14%. Moreover, for a conventional GPU
and even without the optimized memory layout, PR is shown
to reduce off-chip traffic by 46% and overall energy by 4%
on average.

The rest of this work is organized as follows. Section II
provides background, and summarizes our previous analysis
of the precision tolerance of five neural networks. Section III
presents the PR technique that reduces traffic to and from
memory, leading to reduced energy consumption, higher per-
formance and higher effective memory capacity. Section IV
evaluates the proposed extension on both an accelerator and
GPU architecture. Finally, Section V summarizes our findings.



II. USING A PER-LAYER NUMERICAL REPRESENTATION

This section reports the minimum length fixed-point rep-
resentations that can be used for a set of popular DNNs.
Section II-A briefly reviews DNNs basics. Section II-B lists
the DNNs used in this work and Section II-C reports the
representation lengths that can be used if chosen 1) per layer,
or 2) per network comparing the resulting memory footprints
to a commonly used baseline 16-bit fixed-point representation.

A. Background

A DNN comprises several layers that process the input data
in a feed-forward fashion. Each layer accepts input data from
a preceding layer, plus a set of previously learned weights
and produces a set of output data, which is the input data
for the next layer. Each layer performs a fixed sequence of
arithmetic operations depending on the layer’s type. The layer
computations exhibit data parallelism which hardware can
exploit to boost performance.

Modern DNNs use a variety of layer types, but this work
focuses on networks whose time is spent primarily on the
convolution layers. A convolutional layer applies sets of
weights (filters) to overlapping windows of the input. For each
window and filter the inner product of the window data and
filter weights is computed to produce a single output value.
The output data dimensions then depend on the number of
windows and filters.

B. Networks

We consider the five neural networks analyzed in [9], which
are listed in Table I. They range from the relatively simple four
layer LeNet to the 22 layer GoogLeNet which was the best
network in the 2014 ImageNet Competition [11]. As in [9],
we group layers in GoogLeNet into 11 layer groups, where
each group uses the same precision.

C. Per-Layer Representation

In [9], we found the minimum set of precisions for each
layer that could be used to store the data or weights while
maintaining the network accurancy to within 1%.

The Data columns of Table I report the minimum length
fixed point representation, in bits, used for the data of each
layer of each network. For the Weights the lengths do not vary
by much across layers and hence we choose one length for
the whole network. The results suggest that: 1) the minimum
length representation that can be used by each stage varies
considerably within and across DNNs, and 2) overall the
representations are much shorter even when compared with
a 16-bit fixed-point representation.

III. PROTEUS

The variability in precision needed by each layer and each
network can be exploited to improve the performance and
energy of DNN implementations. In this work, we show how
it can be used to reduce memory traffic and footprint in the
memory system by proposing PROTEUS (PR) a layered exten-
sion that is compatible with existing DNN implementations.

Network Data Weights
(Per Layer) (Uniform)

LeNet[12] 2,4,3,3 7
Convnet[13] 8,7,7,5,5 9
AlexNet[14] 10,8,8,8,8,8,6,4 10
NiN[15] 10,10,9,12,12,11,11,11,10,10,10,9 10
GoogLeNet[4] 14,10,12,12,12,12,11,11,11,10,9 9

TABLE I: Minimum precision, in bits, for data and weights
for a set of neural networks.

First we consider a general DNN implementation where for
each layer, the input data and weights are read from memory,
processed by the computational unit and the results are written
to memory. In the baseline system, both memory and compute
operate on data in a native representation, such as 16-bit fixed
point or 32-bit floating point.

PR adds a translation layer between memory and compute
to translate data between a reduced precision representation
used in memory and the native representation used in the
compute engine. The reduced precision data uses fewer bits
per data element allowing data elements to be packed together
in memory, reducing the memory footprint. We do not modify
the physical dimensions of the memory or the access width.
Instead, memory traffic is reduced by accessing fewer rows
to read the same amount of data. Using two different rep-
resentations for computations and storage allows PR to be
implemented as a layered extension over existing compute
engines.

Using a fixed-point representation for computation and
storage has been considered before for DNNs; however, past
work used one representation that was selected to work well
for any DNN that may be executed. PR allows for a different
per layer storage representation.

PR assumes that the DNN is annotated with information on
the representation to be used per layer, that is, the number of
bits and the fixed exponent of the fixed point representation.
This can be stored with the hyperparameters1 associated with
each layer.

The conversion can be done at the level of individual
memory accesses or at the level of cache blocks. For example,
for a graphics processor it could either be done at the level of
the cache block used by the compute engines on fill (to reduce
hit time) or upon access to a line (to increase effective cache
capacity).

Another indirect yet important benefit is that for a fixed
amount of memory it increases the size of DNNs that can
be processed. Today, memory footprint is seen as the main
limiter in DNN processing during classification [4]. In modern
semiconductor technologies, data movement energy tends to
dominate compute energy with off-chip accesses being 2-
3 orders of magnitude more expensive than floating-point
addition or multiplication [16].

The remainder of this section discusses how PR can be in-
corporated first in a state-of-the-art accelerator (Section III-A)

1hyperparameters define the input dimensions, access patterns and compu-
tation of the layer
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Fig. 1: a) Memory elements of an example accelerator including 4 NFUs. b) Proteus elements in a NFU.
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a reduced precision of P = 3 bits

and then in a GPU (Section III-B).

A. Incorporating into a DNN accelerator

This section explains PR can be incorporated into a state-of-
the-art DNN accelerator. Section III-A1 describes the baseline
accelerator, and Section III-A2 shows how we incorporate
PROTEUS.

1) Accelerator Architecture: The baseline accelerator we
consider is a derivative of the DaDianNao accelerator. The
accelerator incorporates multiple Neural Functional Units
(NFUs). Figure 1 shows an example design with four NFUs,
highlighting the memory elements and the connections among
them. Each NFU includes a 256-wide SIMD pipeline [3].
The input neurons (data) and synaptic weights (weights) are
read from two buffers, NBin and SB, respectively. The output
neurons and intermediate results are stored in the NBout
buffer. The data stored in the NBout can be fed back into
the processing pipeline when necessary.

Our baseline system uses 16-bit fixed point natively for both
the data and weights. Every cycle 16 elements x 16 bits are
read from NBin and 256 elements x 16 bits are read from SB.
At its output, the NFU can write 16 x 16-bit results to NBout.
NBin and NBout are SRAMs with 64 entries (2KB). SB is a
2MB eDRAM.

Our baseline design is configured to match a node of
the DaDianNao system. It incorporates 16 NFUs, plus an
additional shared 4MB eDRAM to hold the input and output

data of the current layer (36MB of eDRAM in total). An off-
chip DRAM provides the initial input and the weights.

2) Proteus in the Accelerator: With PR, data and weights
are stored using the storage representation in all levels of
memory except in NBout as we will explain. The data and
weights are converted to the internal compute representation
just prior to entering the computation units. Compressing the
data and weights by using a reduced precision representation
will reduce the dynamic power at each memory level: the
buffers, the on-chip eDRAM, and the off-chip DRAM.

3) A Different Memory Layout: By using a different layout
of data and weights in storage, PR enables the use of a low-
cost, low-energy unpacking unit. For ease of explanation, let
us restrict attention to the weights for the time being.

In the native layout, the 256 weights that need to be
processed in a single cycle appear next to each other in storage,
corresponding to a row in SB, followed by the next block of
256 weights to be processed in the subsequent cycle. However,
when we pack reduced precision elements into memory they
become unaligned with the destination pipeline input and we
need additional logic to align them. Requiring different shifts
for each value and the potential for very long lateral wires
could lead to a significant overhead.

To address this, PR organizes the data differently. Starting
with the native representation, we group the weights into 256
”virtual columns”, each corresponding to one input of the
pipeline. Figure 2a shows a simplified example with two 4 bit
words in each row, and thus 2 vitrual columns. Each cycle, a
row is read from the buffer and fed into the pipeline. So in
the first cycle a is read as word0 and b is read as word1, in
the second cycle, c will be read as word0 and d will be read
as word1.

Figure 2b shows the memory organization in the buffers for
PROTEUS when we pack 3-bit values into 4-bit words, thus
every 4 rows of words in the baseline buffer can be stored in
3 packed rows. Keeping the values (a-h) in the same virtual
columns as the baseline will reduce the cost of alignment.
This alignment is done as part of a translation layer unit after
each buffer that compresses and decompresses the data and
weights.
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4) Translation Layer: The translation layer consists of two
modules, the unpacker and the packer. The unpacker converts
the reduced precision P-bit weights/inputs that are packed in
the input buffers to the full precision 16-bit values used by
the compute pipeline. The packer converts the results from
the output buffer after the computational units to the reduced
precision storage representation and packs them into 16-bit
words. As we introduced in Section III-A3, we pack data
within one 16-bit wide virtual column of words in the buffers,
so we only need to consider the design of the unpackers and
packers for one such virtual column. In the full NFU there
will be 256 unpackers for SB and 16 unpackers/packers for
NBin/NBout, respectively. NBout is also used to store partial
sums that are fed back into the pipeline. As such it is part
of the internal computation of the layer and should store data
in the native precision. Output data is only packed when it is
written back to the central eDRAM.
Unpacker: Figure 3a shows the unpacker for our system with
words having a native precision of 16 bit. The three steps
involved in unpacking are illustrated with a simplified example
in figure 3c. This example shows how we would unpack the
data in the word0 column of figure 2b.

1) When a new word needs to be read in, it is loaded into
either the upper or lower word of the unpacking register in an
alternating fashion. The register is two words wide to allow
values split across two words to be rejoined. Note that we do
not read in a word every cycle, only when a word contains a
partial value that is needed.

2) The 32 bits in the unpacking register are rotated to align
the current value with the correct position in the 16-bit output.
A circular shifter is used so that values split both between bit
15 and 16 and bit 31 and 0 can be recombined.

3) Once we have the P-bit value in the right bit position,
we need to extend it to an equivalent 16-bit fixed point value.
Since we are dealing with fixed point values, this involves sign
extending the most significant bit and zero extending the least
significant fractional bit.

The wide bit masks are used as control signals instead
of narrower encoded signals to avoid adding a decoder to
each unpacker unit. Since there are many parallel unpackers
operating in lock step for each buffer, they all share the same

control signals and decoding can be done by a single control
block per buffer.
Packer: The packer, shown in figure 3b, is mostly the reverse
of the unpacker, also using a 32-bit circular shifter and packing
register. One key difference is that data produced by the
pipeline must be rounded to the nearest P-bit representation to
minimize compression error. Fractional bits are rounded to the
least significant bit (lsb) of the reduced precision value. If the
unpacked value is outside the range of the reduced precision
representation then it saturates to the maximum or minimum
P-bit value. The rounded unpacked data is then shifted to align
with the next available space in the packing register. When
loading in to the packing register only P bits are loaded using
a 32-bit mask connected to the inidivual register enables. Once
a full word has been packed, it is written out.

5) Data Alignment in Memory: Under ideal circumstances,
PR can reduce the memory traffic of the data to P/16 of the
baseline. We call this fraction the traffic ratio (TR). How-
ever, there are alignment constraints which prevent us from
achieving this ideal traffic ratio. Our goal with PROTEUS is to
improve memory efficiency without impacting performance.
That means we must be able to feed the pipeline with new
data every cycle. As such, each stream of values must have its
first value aligned, where a stream is a set values that is both
contiguous in memory and processed in sequential rows.

In 3D convolutions, due to the overlapping sliding window
access pattern, a stream size is equal to the depth, d, of the
3D input data. Since data is read in 16 word rows, we must
align the input data every d/16 rows. For example, in figure
2b where rows are 2 words, if d = 4 then we must align data
every 2 rows. This means that values e and f must be aligned
to the beginning of the next row and we get no compression.

Figure 4 shows the resulting input data compression for all
the networks. For LeNet and Convnet, d ≤ 32, so only 8 bits
yield compression. For all networks, d = 3 in the first layer,
which reduces the overall TR.

The aligned traffic ratios for the selected precisions are
shown in Table II. As expected, the smaller networks see less
data compression than their ideal, while the larger networks
get closer to the ideal. Weights on the other hand have a stream
size equal to the filter size, so the aligned TR is much closer
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Data Weights
Network Ideal Aligned Ideal Aligned
LeNet 0.16 0.76 0.45 0.44
Convnet 0.48 0.61 0.56 0.56
AlexNet 0.55 0.56 0.63 0.63
NiN 0.64 0.66 0.63 0.63
GoogLeNet 0.72 0.78 0.56 0.56

TABLE II: Traffic ratio for convolution layers

to the ideal.
6) Memory Layout Conversion and Execution Time: The

weights are pre-specified and thus the preprocessing of the
weights is a one time cost that can be done off-line. Since
we get no compression on the first layer, input data can be
provided as in the baseline with no preprocessing.

B. Incorporating into a GPU

We also consider incorperating PROTEUS into a GPU.
This is implemented as an address remapping technique to
compresses the data in the GPU’s global memory. Padding is
used whenever a block of words or data crosses the bound-
aries of a cache block. We use a packer/unpacker network
comprising several multiplexers similar to what was described
in Section III-A. However, since we use padding at the level
of cache blocks, there is no need to shift and join portions of
different cache blocks.

We apply the address remapping prior to the GPU L1 cache.
However, memory coalescing [17] further limits the amount
of affective compression we can achieve when aligning values
within a cache line. This results in groups of P having the
same effective compression as the largest P: 16-11, 10-9, 8-7.

IV. EVALUATION

This section evaluates PR. Section III-A1 studies PR in
the context of the accelerator architecture, while Section IV-B
shows the benefits possible when PR is employed in a modern
graphics processor system.

A. Accelerator Evaluation

1) Methodology: We implemented the baseline accelerator
NFU pipeline with and without the packers/unpackers in
Verilog and synthesized them using the Synopsis Design
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Compiler vH-2013.03-SP5-2 [18] with the FreePDK 45nm
library v1.4 [19]. We modeled the area and power for the
SRAM buffers using CACTI v5.3 [20]. The eDRAM energy
was modeled with Destiny [21]. The off-chip memory was
modeled using DRAMSim2 [22] with 2GB of DDR3-800.
Off-chip memory is not a bottleneck so we chose a lower
frequency memory to be conservative.

2) Energy Savings: Figure 5 shows the total energy of each
network with PR relative to the baseline (base). Overall PR
yields an energy savings of up to 21% (LeNet) and 14% on
average.

Figure 6 compares the energy of each component in the
baseline accelerator and Proteus, relative to the total baseline
energy. The added logic of the packer/unpacker in the pipeline
increases power by 19%, while compressing the data and
weights reduces power in the buffers by 33%, the eDRAM
by 35% and the DRAM by 35%.

3) Area Overhead: The packers and unpackers increase the
area of the pipeline from 1.42mm2 to 1.70mm2, an overhead
of 17%. However this only results in a 1.84% overhead for
the full chip.

B. GPU Evaluation

This section measures the impact on performance and
energy of applying PR in deep learning neural networks
implemented over GPUs.
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We use GPGPU-Sim v3.2.2 and GPUWattch v1.0 [23] with
the baseline Fermi configuration to model and evaluate PR. We
use cuda-convnet [13] to evaluate the modifications described
in III-B on GPGPU-Sim, applying the values of P for each
layer given in Table II.

For consistency, we compare the GPU implementation with
a 16-bit fixed-point baseline. Since cuda-convnet uses 32-
bit floating point natively, we approximate the improved
system efficiency by scaling portions of the core power from
GPUWattch. Specifically, we scale down the register file,
integer and special functional units, pipeline, and constant
dynamic energy conservatively by a factor of two. We also
scale the floating point unit energy by a factor of two to
approximate fix point energy.

The results for the five networks are shown in figure 7 and
are normalized to a 16-bit baseline. Performance is improved
by 0.2%-2% and energy is improved by 0.6-10% across the
different networks. Most of the energy gains result from the
reduction of DRAM accesses and the reduced shared memory
access energy. While there are large reductions in global
memory accesses, from 8% to 79%, the convolution layers
utilize the GPU’s shared memory to perform the convolution
operation, which limits the benefit. NiN and GoogLeNet show
the least improvement from PR due to the padding described
in Section III-B.

V. CONCLUSION

We proposed PROTEUS, a dynamically configurable, layered
extension over existing hardware that performs memory com-
pression by leveraging the reduced precision tolerance of Deep
Neural Networks with the aim of reducing overall memory
traffic, memory energy and increases effective memory capac-
ity. Using simulation, PROTEUS’ benefits were demonstrated
when incorporated into a DNN accelerator and a GPU.

We demostrate savings in dynamic memory energy, however
there is also opportunity for static energy savings by virtue of
the reduced memory footprint. While we presented PROTEUS
as a hardware extension, it is likely that a variation of the
approach can be implemented purely in software as well.
Furthermore, it may be possible to use different representations
for other, possibly finer-sized groupings of data such as
portions of layers.
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