
Interval-Adjoint Significance Analysis:
A Case Study

Jens Deussen, Jan Riehme and Uwe Naumann
LuFG Informatik 12, RWTH Aachen University

Software and Tools for Computational Engineering
52074 Aachen, Germany

Email: [deussen,riehme,naumann]@stce.rwth-aachen.de

Abstract—We report further development of the interval-
adjoint significance analysis (IASA) as a part of the SCoRPiO
project. In SCoRPiO significance based approximate computing
is used to reduce the energy consumption of a program execution
by tolerating less accurate results.

Part of the project is to define significance as an algorithmic
property to quantify the impact of a computation to the output.
Information needed by this definition is obtained by an analysis
combining algorithmic differentiation and interval arithmetic.
Thus, the analysis can identify computations that can be evalu-
ated less accurate, e.g. on low power but less reliable hardware.

An interval splitting approach is presented to address issues
introduced by a naive usage of interval arithmetic. This approach
additionally offers a more detailed and refined analysis of
the underlying computer code. Furthermore, we introduce the
quantification mode that is used to verify intuitive and well
known characteristics of a code and to obtain the corresponding
insignificant computations.

I. INTRODUCTION

The basic idea of approximate computing is to relax re-
liability constraints for the benefit of an energy efficient
execution of a software. Approximate result are sufficient for
a lot of applications, e.g. in the field of multimedia, audio,
image and video processing respectively, or in data mining.
SCoRPiO wants to exploit the fact that the computations of
an applications has different importance for the quality of the
result. Automatic code characterization techniques which use
compile- and run-time analyses can be used to classify those
computations as significant or insignificant. Significant com-
putations are more important to the quality of the output while
insignificant computations just have a minor impact. Tolerating
a controlled degree of imprecision enables that insignificant
computations can be steered to low power yet less reliable
hardware. Furthermore, the significance information can be
used on a software level to save computing time by replacing
insignificant computations by representative expressions.

Other approaches to significance-driven approximate com-
puting exist. In [1] statistical analysis is used to classify the
computations into significant and non-significant. [2] obtains
significance information by interval arithmetic and error prop-
agation based on local partial derivatives.

As a part of the FET-open project SCoRPiO 1 we developed
IASA to obtain significance information of the computations

1http://www.scorpio-project.eu/outline/

of a computer program for an user defined input domain.
Therefore, the given C or C++ source code is transformed to
a directed acyclic graph representing single assignment code.
Graph analysis can extend the significance information by
identifying those computations that only lead to insignificant
parts of the code. Finally, energy efficient code variants of
the software are generated by using the significance informa-
tion. Previous contributions to WAPCO and other conferences
addressing IASA of SCoRPiO are [3], [4], [5].

The main idea of IASA, presented in [3], is to define a sig-
nificance based on the forward propagation of interval values
and the backward propagation of adjoints. Therefore, Interval
Arithmetic [6] and Algorithmic Differentiation [7], [8], [9]
are combined. Additionally, we define interval splitting [4] to
address difficulties introduced by the naive usage of interval
arithmetic, e.g. unfeasible relational operators or the wrapping
effect [10]. This approach produces multiple scenarios and
enables to generate even more efficient code variants for sub-
domains of the user defined input domain.

In this paper we will introduce two different types of inter-
val splitting strategies, the exploration and the quantification
mode respectively. While the exploration mode is a blackbox
strategy analyzing code without additional information, the
quantification mode verifies knowledge about the code and
identifies insignificant parts of the code. As a case study we
analyze a simulation of the 1-D heat equation with IASA. The
quantification mode is used to verify that the influence of a
heat source to points beyond a specific range is negligible for
small simulation times.

The document is organized as follows: Section II outlines
the methodology of IASA. We give a algorithmic definition of
significance and motivate the interval splitting. Subsequently,
the exploitation of significance information is described. In
section III we analyze a simulation of the heat equation by
IASA. Finally, section IV summarizes the document and gives
an outlook.

II. METHODOLOGY

In this section we give an overview of the interval adjoint
based significance and the mathematical concepts used in
IASA. Furthermore, we present the tool implementing IASA
and introduce an interval splitting approach addressing issues

that occur in practice. For a more detailed description of IASA
see e.g. [11].

For IASA we assume a computer program P implementing
a multivariate scalar function f : D → I with domain D ⊆
Rn, image I ⊆ R and y = f(x) in which x = (x1, . . . , xn)T .
The implementation of function f can be decomposed into
a sequence of p elemental functions (binary operations and
intrinsic functions) by the three-part evaluation procedure from
[8]. This transformation yields a single assignment code (SAC)
that can be represented as a directed acyclic graph (DAG)
G = (V,E) with the set of nodes V = 1, . . . , n+ p and
directed edges E = {(j, i)|j ≺ i}. The nodes represent
the input, intermediate and output variables with their cor-
responding elemental function and each edge denotes a direct
dependency j ≺ i of the i-th assignment on the result of the
j-th computation

A significance analysis should assign significance values
Sy(vi) for all intermediate variables vi representing node i
and for a given input domain D = [x] = [x,x] = {x ∈
Rn|x ≤ x ≤ x} of the inputs with lower bound x ∈ Rn

and upper bound x ∈ Rn. Therefore, the influence of the
input domain [x] on each intermediate variable vi and the
influence of each intermediate variable on the output y need to
be quantified. The significance value should be a combination
of both information.

A. Interval Adjoint Significance Analysis

Interval Arithmetic (IA) evaluates functions by using spec-
ified ranges instead of actual values. The interval evaluation
f [x] of f for the given input range [x] yields a guaranteed
enclosure f [x] ⊇ {f(x)|x ∈ [x]} that contains all possible
function values of f(x) for x ∈ [x]. Additionally, enclosures
[vi] for all intermediate variables vi are obtained by the interval
evaluation.

Nevertheless, a function evaluation in IA only yields a
combination of the influence of all input and intermediate
predecessors on an intermediate or output variable. To obtain
the individual influence of intermediate variables for the final
output y adjoint Algorithmic Differentiation can be used.

Algorithmic Differentiation (AD) computes additionally to
the function value its derivatives by using the chain rule. The
adjoint mode of AD can compute the first order derivatives
∂y
∂vi

of the output y with respect to all intermediate variables
vi by a single evaluation of an adjoint model of f .

A combination of IA and AD yields interval valued partial
derivative ∇[vi][y] that contains all possible derivatives of
output y with respect to intermediate variable vi for the given
input domain [x].

B. Definition of Significance

A new definition for the significance of an intermediate
variable vi that also combines forward information of IA and
backward information of AD is given for a defined input range
[x] by

Sy(vi) = w[vi] ·max |∇[vi][y]|. (1)

In (1) w([vi]) = vi − vi denotes the width of the interval
value [vi] that measures the impact of the input x on an
intermediates variable vi. A large width w([vi]) indicates that
the intermediate vi is highly sensitive to the variation of all
inputs x in the range [x]. Furthermore, the absolute maximum
of the first order derivatives |∇[vi][y]| of output y with respect
to intermediate vi is a measurement for the individual influence
of intermediate variables to the output. If the absolute value
of this derivative |∇[vi][y]| is small, a change in the value of
vi has just a small impact on y.

Variables vi with a significance value less or equal to a
predefined significance bound ε are called insignificant:

Sy(vi) ≤ ε

All other variables are called significant and have to be
computed precisely.

The significance information extends the previously defined
DAG to a significance DAG GS = (V S ∪ V C , E) in which
V S = {i|Sy(vi) > ε, i ∈ V } is a subset of V containing all
significant nodes and V C is the set of insignificant nodes with
V = V S ∪V C . Applying IASA to a DAG G for a given input
domain D will yield the corresponding significance DAG GS .

The wrapping effect might yield overly pessimistic results
by large overestimation of the value intervals [vi]. An artificial
significance is created by this overestimation due to the direct
dependency of the significance on the width of those value
intervals w([vi]) in (1). Thus, the significance information
quality gained by IASA is low in that case. Overestimation
grows also with the size of the input domains. Moreover, in IA
a comparison [vi] < c of an interval [vi] with a constant c is not
defined if the interval contains the constant (c ∈ [vi]). In the
following section we introduce an interval splitting approach
to address those issues.

C. Interval Splitting

The general idea of interval splitting is to divide value
intervals [vi] into a predefined number of subinterval and
generate multiple IASA scenarios. In case of a comparison
[vi] < c with c ∈ [vi] the interval is split into two scenarios
with [vi, c) or [c, vi]. Thus, the interval splitting approach can
be used to apply IASA to computer programs with arbitrary
control flow.

We construct two different modes for the interval splitting,
the exploration mode and the quantification mode respectively.
The exploration mode is a sort of blackbox analysis, in which
all variables are split that have a large value or adjoint interval.
Thus, the user has to give an upper bound for the maximal
allowed width of all value and adjoint intervals. In contrast, the
quantification mode considers user knowledge about the code
to find promising input domains in terms of computational
savings. Only user selected input variables are split to obtain
the significance values and thereby the insignificant parts of
the code.

Interval splitting of the input domain yields the application
of IASA to a subset Dk ⊆ D of the original domain. A
scenario sk = (Gk, Dk) is uniquely defined by its input

domain Dk and the corresponding DAG Gk. IASA is applied
recursively to new scenarios.

D. Interpretation of Significant Information

In [3] we already proposed different possibilities to exploit
insignificant parts of the code. For this case study we assume
that all values of an interval have the same expectation
such that insignificant variables can be replaced by constants
equal to the center of the interval. Setting a variable vi
to a constant yields elimination of the edges connecting vi
with its predecessors in the significance DAG. Dependency
analysis can be used to propagate insignificance information
to predecessors and successors to replace or remove further
nodes, e.g. activity analysis []. An advanced significance DAG
GS+ = (V S+ ∪ V C+, E) additionally stores this information
with V C+ containing the indices of those nodes that can be
saved by replacing them with constants and V S+ is the set of
nodes that have to be computed precisely.

A significance DAG GS
k = (V S

k ∪ V C
k , Ek) can be trans-

formed back to source code by a simple extension of the
interpreter for graph GS , where nodes vi ∈ V C are replaced
by constants. Codes for advanced significance DAGs GS+

k can
be generated analogous with V S+

k and V C+
k instead of V S

k and
V C
k , respectively. In case of interval splitting, we need to rank

scenarios and we will only generate special code variants for
the top-ranked scenarios to keep the size of the entire source
code acceptable. Thus, we define the rank rk of a scenario sk
as the product

rk = r(GS
k , Dk) =

n∏
i=1

w(Di
k) · |V C

k |, (2)

in which |V C
k | is the total number of insignificant variables

and
∏n

i=1 w(Di
k) is the input domain size. This combines the

probability to execute the scenario and the savings that are
obtained by its execution.

E. Implementation

To make IASA available the user has to include the header
file of IASA. All variables with a floating point data type have
to be replaced by the special data type siggraph::flat
of IASA. The user has to specify typical input ranges for
a set of input variables and register them. Furthermore, the
user has to define a set of output variables for the seeding of
the adjoint intervals. For a given significance bound and the
required parameters for the interval splitting IASA identifies
the insignificant parts of the code and generates special code
variants.

The implementation of IASA is based on a combination of
the library dco/c++ [12] with an interval base type from the
interval library filib++ [13] both written in C++.

III. CASE STUDY

The well known 1-D heat equation describes the distribution
of heat in a thin rod heated by a candle at the right end for
time t ≤ tf . We use a rod length L = 2, a constant heat
coefficient c = 0.01, and examine the temperature T at the

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Te
m

pe
ra

tu
re

 in
 K

x

tf = 1
tf = 5

tf = 10
tf = 50

tf = 200

Fig. 1: Heat distribution for different simulation times

center of the rod. Because the heat from the source will not
reach the center of the rod for small simulation times tf , there
is a limited change in the temperature T only in the left part of
the rod. Nevertheless, a numerical code would compute new
(but nearly unchanged) values of temperature T for the left
part of the rod. We use the quantification mode of IASA to
verify that a lot of computations are insignificant in that case.

A. Problem Description

The distribution of heat within the rod over time is modeled
by the parabolic partial differential equation

∂T

∂t
= c · ∂

2T

∂x2
, T = T (t, x, c), (3)

where x ∈ [0, 2] is a space variable and t ∈ [0, tf] denotes the
time. The initial condition is T (0, x, c) = 300K ∀x ∈ (0, 2)
and the boundary conditions are T (t, 0, c) = 300K and
T (t, 2, c) = 1700K ∀t ∈ [0, tf]. Solving the 1-D heat
equation (3) for the given initial and boundary conditions
yields a temperature distribution T = T (t, x, c). The heat
distribution for five different simulation times is visualized
for the described test case in Fig. 1.

An equidistant spatial discretization of
x = (x0, . . . , xn−1)T with ∆x = L

n−1 in (3) with a
second order finite difference scheme gives the ordinary
differential equation (ODE)

∂Tj
∂t

=
c

(∆x)2
· rj(T) , j = 0, . . . , n− 1 , (4)

with

rj = 0 , j ∈ {0, n− 1} (5)
rj = Tj+1 − 2 · Tj + Tj−1 , j ∈ {1, . . . , n− 2}, (6)

where Tj = T (t, xj , c) is the temperature at position x = xj .
Because (4) is linear in T a first order Taylor series at point

T ≡ 0 (Tj = 0 for j = 1, . . . , n− 2) expands the ODE

∂T

∂t
=

c

(∆x)2
·
(
r(0)︸︷︷︸
=0

+
∂r

∂T
· (T − 0)

)
. (7)

The residual r at T ≡ 0 vanishes identically as a result
of (5) and (6). Linearity of the residual in T implies the

independence of its first derivative from T , such that the
Jacobian

(
∂r
∂T

)
i,j

has the form

(
∂r

∂T

)
i,j

=

−2, if i = j ∧ i /∈ {0, n− 1}
1, if |i− j| = 1 ∧ i /∈ {0, n− 1}
0, else

(8)

with row index i and column index j.
The left hand side of the ODE in (7) is approximated by

a backward finite difference scheme yielding the backward
Euler method. Let T k = T (k∆t, x, c) be the temperature at
time t = k∆t and for a temporal discretization with m time
steps of equal length ∆t =

tf
m , (7) transforms to

T k+1 − T k

∆t
=

c

(∆x)2
· ∂r
∂T
· T k+1 , (9)

which imply the linear system

I − a · ∂r
∂T︸ ︷︷ ︸

A

·T k+1 = T k , (10)

with

A =

1 0 0 · · · 0

−a 1 + 2a −a
. . .

...

0
. 0

...
. . . −a 1 + 2a −a

0 · · · 0 0 1

, (11)

and

a =
c∆t

∆x2
. (12)

In (10) I denotes the identity in IRn and A is the system
matrix that is constant for given c, ∆x and ∆t.

B. Setup of the Significance Analysis

For the simulation we use a discretization with m = 800
points in time and n = 41 points in space. Furthermore, we
choose the initial temperature of the rod T (0, x, c), the tem-
perature at the candle T (t, 2, c) and the final time tf as inputs.
The input domains for those inputs are T (0, x, c) ∈ [280, 300],
T (t, 2, c) ∈ [1650, 1700] and tf ∈ [0, 32]. The output of the
simulation is the temperature T (tf , 1, c) at the center of the
rod at the final time t = tf .

Listing 1 gives the implementation of the 1-D heat problem
that is analyzed. In lines 3-12 the system matrix A is con-
structed once as shown in (11). Then, A is decomposed into a
lower and an upper triangular matrix that are stored in the same
variable as A in lines 14-21. The iteration over the time steps
is implemented in line 23-36 in which the linear system from
(10) is solved by a forward substitution in lines 24-28 and a
backward substitution in lines 30-35. The inputs are registered
in lines 48-50 right before the start of the simulation and the
registration of the output is done in line 59. Finally, IASA is
started in line 60.

Listing 1: Implementation of the simulation of the 1-D heat
equation

1 t e m p l a t e<typename Type>
2 vo id h e a t (i n t m, i n t n , Type& c , Type& x , Type& t ,

v e c t o r<Type>& T) {
3 s i g g r a p h : : s e t s e c t i o n (” System M at r i x ”) ;
4 v e c t o r<Type> A(n∗n) ;
5 A[0] = 1 ;
6 A[n∗n−1] = 1 ;
7 Type a = t ∗pow (n−1 ,2 .0)∗c /m/ pow (x , 2 . 0) ;
8 f o r (i n t i =1 ; i<n−1; i ++) {
9 A[i ∗n+ i −1] = −a ;

10 A[i ∗n+ i] = 2∗ a +1;
11 A[i ∗n+ i +1] = −a ;
12 }
13

14 s i g g r a p h : : s e t s e c t i o n (”LU Decompos i t i on ”) ;
15 f o r (i n t k =0; k<n ; k ++) {
16 f o r (i n t i =k +1; i<n ; i ++)
17 A[i ∗n+k] /= A[k∗n+k] ;
18 f o r (i n t j =k +1; j<n ; j ++)
19 f o r (i n t i =k +1; i<n ; i ++)
20 A[i ∗n+ j] −= A[i ∗n+k]∗A[k∗n+ j] ;
21 }
22

23 f o r (i n t j =0 ; j<m; j ++) {
24 s i g g r a p h : : s e t s e c t i o n (” Forward S u b s t i t u t i o n ”) ;
25 f o r (i n t i =0 ; i<n ; i ++) {
26 f o r (i n t j =0 ; j<i ; j ++)
27 T [i] −= A[i ∗n+ j]∗T [j] ;
28 }
29

30 s i g g r a p h : : s e t s e c t i o n (” Backward S u b s t i t u t i o n ”) ;
31 f o r (i n t i =n−1; i >=0; i−−) {
32 f o r (i n t j =n−1; j>i ; j−−)
33 T [i] −= A[i ∗n+ j]∗T [j] ;
34 T [i] /= A[i ∗n+ i] ;
35 }
36 }
37

38 }
39

40 i n t main (i n t a rgc , c h a r ∗ a rgv []) {
41 i n t n = a t o i (a rgv [1]) , m = a t o i (a rgv [2]) ;
42 do ub l e pc = 0 . 0 1 , L = 2 , pT0 = 300 , pTN = 1700 ;
43 do ub l e t s = a t o f (a rgv [3]) , t f = a t o f (a rgv [4]) ;
44

45 s i g g r a p h : : s e t s e c t i o n (” I n i t i a l i z a t i o n ”) ;
46 s i g g r a p h : : f l a t c = pc , x = L , t = t f ;
47 s i g g r a p h : : f l a t T0 = pT0 , TN = pTN ;
48 s i g g r a p h : : r e g i s t e r i n p u t (t , t s , t f) ;
49 s i g g r a p h : : r e g i s t e r i n p u t (TN, 1650 , 1700) ;
50 s i g g r a p h : : r e g i s t e r i n p u t (T0 , 280 , 300) ;
51

52 v e c t o r<s i g g r a p h : : f l a t > T (n) ;
53 f o r (i n t i =0 ; i<n−1; i ++) T [i] = T0 ;
54 T [n−1] = TN;
55

56 h e a t (m, n , c , x , t , T) ;
57

58 s i g g r a p h : : s e t s e c t i o n (” A n a l y s i s ”) ;
59 s i g g r a p h : : r e g i s t e r o u t p u t (T [(n−1) / 2] , 1 . 0) ;
60 s i g g r a p h : : a n a l y s e (1 . 0) ;
61 r e t u r n 0 ;
62 }

C. Results

The code flattener generates a DAG with 2,702,061 nodes
for the given implementation and setup in section III-B. With
a significance bound of ε = 0 IASA identifies 1,292,973
nodes to be insignificant which is about 48% of the total
computations. Such a high ratio of insignificant computations
for a relatively unspecific input domain indicates an inefficient
code.

In this particular case a dense solver is used to compute
the solution of the linear system with the tridiagonal system

0 %

10 %

20 %

30 %

40 %

50 %

60 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

In
si

gn
ifi

ca
nt

 C
om

pu
ta

tio
ns

Simulation Time tf

Fig. 2: Ratio of insignificant computations plotted over the
simulation time tf for an input domain with width equal to 1

matrix A. The dense LU decomposition has a complexity of
O(n3) while the dense forward and backward substitution
have a complexity of O(n2). The substitutions are called m-
times which yields a total complexity of O(mn2 + n3). By
exploiting the sparsity pattern of the system matrix and using
a sparse LU decomposition and specialized forward and back-
ward substitutions for tridiagonal matrices the computational
complexity can be reduced to O(mn).

Replacing the dense linear solver in our implementation
in Listing 1 by a sparse solver and LU decomposition the
generated DAG only contains 161,081 nodes. Again using
a significance bound of ε = 0 yields 1,665 computations
that are insignificant. These computations are related to the
zeros in the first and the last row of system matrix A in (11)
that are not exploited by using a sparse solver for tridiagonal
matrices. Thus, IASA automatically detects the inefficiency of
the implementation. We are aware that it is obvious to exploit
the structure of the system matrix and use a sparse solver
in this particular case, but nevertheless IASA automatically
detects this lack of attention or knowledge.

In the following we use the quantification mode with a
binary interval splitting only on the variable for the final time
tf . Binary interval splitting divides the interval into two equal
sized subintervals. Furthermore, we assume a termination
condition for the interval splitting: If the width of the interval
that should be split is already lower or equal to 1 no further
scenarios are generated.

The results show that analyzing input intervals with a
smaller width yields a larger number of insignificant com-
putations. This is induced by holding the significance bound
ε constant because the significance is dependent on the width
of the intervals: Using the significance definition from (1) the
significance value drops by decreasing the width of the input
domain. Furthermore, we can validate the expected result that a
lot of computations are insignificant for small final simulation
times tf . This dependency is visualized in Fig. 2.

To get an idea which computations are marked as in-
significant Fig. 3 shows the automatic generated advanced
significance DAG for a problem size of m = 3 time steps
and n = 9 distributions in space. The different node colors

Tab. 1: Top ten ranked scenarios of the simulation of the heat
equation with their interval ranges for the final time tf and
the number of insignificant computations |V C

k |

k tf |V C
k |

rk
1000

k tf |V C
k |

rk
1000

1 [0, 1] 95583 95583 6 [2, 4] 16412 32824
2 [1, 2] 71007 71007 7 [4, 5] 31887 31887
3 [0, 2] 30832 61664 8 [5, 6] 27068 27068
4 [2, 3] 51363 51363 9 [0, 4] 5964 23856
5 [3, 4] 39132 39132 10 [6, 7] 23594 23594

Listing 2: Structure of the optimized code for the heat equation
1 t e m p l a t e <typename T>
2 vo id h e a t s i g (T& t , v e c t o r<T>& p a r a m e t e r) {
3 i f (t >= 0 && t <= 1) {
4 h e a t 1 (t , p a r a m e t e r) ; / / Code f o r t i n [0 , 1]
5 } e l s e i f (t >= 1 && t <= 2) {
6 h e a t 2 (t , p a r a m e t e r) ; / / Code f o r t i n [1 , 2]
7 } e l s e i f (t >= 2 && t <= 3) {

8

...
9 } e l s e {

10 h e a t (t , p a r a m t e r) ; / / O r i g i n a l code
11 }
12 }

represent the different section of the code they belong to. The
black framed nodes are the user registered variables while the
red framed nodes are insignificant for the computation of the
temperature at the center of the rod. We observed that for
small tf there is only a small range around the center of the
rod influencing the temperature at this position such that only
those computations are significant for the results. For larger
values of the simulation time tf the range of influence expands
and more computations become significant.

In Tab. 1 the top ten of the 63 generated scenarios are
listed with their range for the final time tf , their number of
insignificant computations and their calculated rank. The rank
rk is divided by the width of the input domain size for the
initial temperature w([T (0, x, c)]) = 20 and the temperate at
the right end w([T (t, 2, c)]) = 50 because they are unchanged.
For the best ranked scenario s1 with an input domain of
tf ∈ [0, 1] almost 60% of the computations are marked as
insignificant, while scenario s2 has just 44% insignificant
computations.

The insignificant computations V C
k for each scenario can be

used to obtain special code variants. We observe that the third
ranked scenario s3 with input domain tf ∈ [0, 2] is already
covered by the input domains of the first two scenarios s1
and s2 such that there is no need to generate code for this
scenario. In general, if Dk ∈

⋃k
i=1Di there is no need to

implement scenario sk. A resulting sketch of the code is given
in Listing 2 in which the functions heat_k() executes only
the significant computations of scenario sk.

IV. SUMMARY AND OUTLOOK

We presented IASA and introduced the interval splitting
approach. A case study of a simulation of the 1-D heat equa-
tion was analyzed and the results were used as a sanity check

LU Decomposition Initialization
System Matrix

Forward Substitution
Backward Substitution

Registered In-/Output
Insignificant Node

Fig. 3: Automatically generated advanced significance DAG
GS+ for the simulation of the heat equation with m = 3 time
steps and n = 9 space distributions on the rod to illustrate the
structure of the code and which nodes are insignificant

for IASA. The significance tool recognizes the sparsity of the
system matrix and indicates that the dense solver should be
replaced by a sparse one. Furthermore, the quantification mode
was used to verify that simulations with a short simulation time
have a restricted range of influence that expands for larger
simulation times. By replacing computations with constants
IASA can save up to 60% of the total computations obtained
with the sparse solver for special scenarios.

IASA is currently limited to continuous differentiable func-
tions. Potential problems has to be investigated arisen from
the naive interval evaluation of a function by simply replacing
floating point operations with interval operation. Part of the
future work is to handle comparisons of two intervals that
intersect and find a heuristic which variables should be split.
We will implement the interval splitting with the exploration
mode to apply IASA on larger computer codes without ad-
ditional knowledge and automatically generate more efficient
code variants of black box code.

REFERENCES

[1] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven
computation: a voltage-scalable, variation-aware, quality-tuning motion
estimator,” in Proceedings of the 2009 ACM/IEEE international sympo-
sium on Low power electronics and design. ACM, 2009, pp. 195–200.

[2] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: reliability-and accuracy-aware optimization of approximate
computational kernels,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications. ACM, 2014, pp. 309–328.

[3] J. Riehme and U. Naumann, “Significance analysis for numerical
models,” WAPCO, 2015. [Online]. Available: http://wapco.inf.uth.gr/
2015/papers/SESSION3/WAPCO 3 1.pdf

[4] J. Deussen, J. Riehme, and U. Naumann, “Automation of significance
analyses with interval splitting,” 2015.

[5] V. Vassiliadis, J. Riehme, J. Deussen, K. Parasyris, C. D. Antonopoulos,
N. Bellas, S. Lalis, and U. Naumann, “Towards automatic significance
analysis for approximate computing,” cGO.

[6] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval
analysis. SIAM, 2009.

[7] A. Griewank and A. Walther, “Algorithm 799: revolve: an implementa-
tion of checkpointing for the reverse or adjoint mode of computational
differentiation,” ACM Transactions on Mathematical Software (TOMS),
vol. 26, no. 1, pp. 19–45, 2000.

[8] ——, Evaluating derivatives: principles and techniques of algorithmic
differentiation. SIAM, 2008.

[9] U. Naumann, The art of differentiating computer programs: an intro-
duction to algorithmic differentiation. SIAM, 2012, vol. 24.

[10] A. Neumaier, The wrapping effect, ellipsoid arithmetic, stability and
confidence regions. Springer, 1993.

[11] J. Riehme and U. Naumann, “D1.1: Significance Based Computing
Modeling,” RWTH Aachen, Tech. Rep., June 2014. [Online]. Available:
www.scorpio-project.eu/wp-content/uploads/2014/07/Scorpio D1.1.pdf

[12] J. Lotz, K. Leppkes, and U. Naumann, “dco/c++ - derivative code
by overloading in c++,” RWTH Aachen, Tech. Rep. AIB-2011-06,
May 2011. [Online]. Available: http://aib.informatik.rwth-aachen.de/
2011/2011-06.ps.gz

[13] M. Lerch, G. Tischler, J. W. von Gudenberg, W. Hofschuster,
and W. Krämer. FILIB++ interval library. [Online]. Available:
www2.math.uni-wuppertal.de/∼xsc/software/filib.html

