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Abstract—Conventional computer systems are designed to
deliver error-free operation. However, this strict correctness
prequisite is threatened due to the continuous efforts towards
denser structures which are vulnerable to voltage and tem-
perature fluctuations. In such conditions, errors occur due to
timing violations.

In this paper, an LLVM-based, compile time analysis is
described which categorizes instructions according to their
criticality to program correctness. We quantify the positive
effects on application resiliency when protecting critical in-
structions from producing erroneous results. Moreover, we
study the effects of compiler optimizations on the number of
critical instructions for Intel’s x86 architecture. As a general
rule, compiler optimization increase the number of instructions
that are non-critical to program execution, and which can be
executed on less-reliable hardware.

I. INTRODUCTION

Conventionally an application execution is considered as
correct when all bits of the micro-architectural state are
correct in every clock cycle. A more relaxed definition of
correctness requires that only the architectural state of the
CPU be correct in every clock cycle. In all cases though, the
strict prerequisite is bit-wise correctness ( in bibliography it
is referred as architectural correctness).

Recent technology trends suggest that strict adherence to
bit-level accurate execution may not only be unnecessary,
but also redundant and wasteful. Namely, the significant
energy cost of guard-bands on the operating frequency
or circuit supply voltage to guarantee error-free operation
even when subjected to worst-case combination of process,
voltage and temperature (PVT) non-idealities, as well as the
continued efforts towards even denser structures, has pushed
researchers towards relaxing strict enforcement of precise
hardware functionality. This push towards approximate com-
puting is still in experimental phase, and has not yet been
adopted by the industry.

While hardware unreliability can be handled via tra-
ditional fault-tolerance approaches, such as replication or
checkpointing and replay [13], these methods have disad-
vantages. Running multiple replicas of the same task on
different cores requires significantly more computing and
energy resources. On the other hand, the construction of
checkpoints and the replaying of tasks may slow down

the execution of the computation substantially. Also, both
approaches will not work if unreliable cores malfunction
in a deterministic way, as recent work [11] suggests when
trying to scale voltage below nominal Vdd values.

Interestingly, there are many application domains which
appear to execute correctly from a user perspective, however
the execution is not 100% correct when using the strict
aforementioned correctness definition. This is referred to
as application-level correctness. Such application domains
include multimedia, applications with self-healing properties
(e.g. iterative numerical applications), applications based on
probabilistic computations (e.g. Monte Carlo, classification),
etc. In multimedia applications, small errors in the pixels
of an image are visually imperceptible. Likewise, iterative
solvers can converge to the desired solution even in the
presence of errors, albeit requiring additional iterations.
Finally, in probabilistic applications the notion of error is
embedded in the code and during execution the application
adapts to soft errors.

Moreover, as shown by previous work on approximate
computing [12], such applications may include computa-
tions or execution phases with an unequal contribution to the
quality of the output result. In fact, the output may remain
the same even if some parts of the computation produce
incorrect results.

Nevertheless, all applications contain certain instructions
which should always be executed correctly, even if they
reside in an approximate part of the application. Pointer
arithmetic instructions or instructions that may modify the
control flow of the program are primary candidates. Such
instructions are critical to the correct execution of the
program, even when considering the relaxed definition of
program correctness and should be protected to guarantee
normal termination. Hardware mechanisms which are able
to detect and correct faults due to timing violations have
been proposed in [5], [6]. Those mechanisms try to contain
hardware faults and to present an error-free execution engine
to the software. On near threshold computing or even on
sub threshold executions protecting critical instructions is a
primary concern since any error on such instructions will
almost certainly result to application failures.

In this paper, we perform an experimental evaluation on



the effects of hardware faults on instructions that are critical
to the execution of a program. We show that by deploying
hardware mechanisms to protect the execution of critical
instructions, we eliminate almost all failures due to these
faults even in complex architectures such as Intel’s x86.

The main contributions of this paper are: 1) a compile
time analysis technique, which identifies and tags such
instructions as critical. This work is based on the LLVM [8]
compilation infrastructure. 2) Comparison of the resiliency
of the application when critical instructions are not protected
versus when they are protected by the hardware. 3) Experi-
mental evaluation to identify the influence of compiler and
manual optimizations to the number of critical instructions.

The rest of the paper is structured as follows. Section II
briefly describes the compile time analysis. In Section III,
we evaluate and discuss our findings. Section IV presents
related work. Finally, section V concludes our paper and
presents directions for future work.

II. COMPILER ANALYSIS

In Listing 1 we present a simple snapshot of a vector
addition in MIPS. Line 6 of the assembly implements the
actual addition. The add instruction does not perform any
memory operations and does not alter the control flow.
Lines 1, 3, 11, and 12 correspond to either control flow
instructions or to instructions that can modify the control
flow. All remaining instructions perform pointer arithmetic
or access the memory. Protecting all instructions from faults
in hardware, at execution time, might be unreasonable due to
significant performance and power overheads. Moreover not
all instructions are created equal. Errors impacting pointer
arithmetic instructions may result to program failures, (ap-
plication fails to terminate due to harware or OS trap) more
frequently than faults impacting processing instructions. The
same applies for instructions controlling control flow.

Should someone compare the importance of instructions
in relevance to application resiliency, instructions processing
data should be the least important. Instructions operating
between data might mask a fault, or in any case they rarely
result to program failures. Therefore, protecting such instruc-
tions in the hardware may result to unnecessary waste of
resources since errors might never manifest at the end result.

1 add $s1 , $0 , $0
2 f o r :
3 beq $s0 , $s1 , end
4 lw $t2 , ( $s2 )
5 lw $t3 , ( $s3 )
6 add $t4 , $t3 , $ t 2
7 sw $t4 , ( $s4 )
8 a d d i $s2 , $s2 , 4
9 a d d i $s3 , $s3 , 4

10 a d d i $s4 , $s4 , 4
11 a d d i $s1 , $s1 , 1
12 j f o r
13 end :

Listing 1: Vector add used a simple example.

Distinguishing the instruction type in the hardware level
might result to interesting research directions. For example,
an opportunity would be to trade off the applications quality
of output with performance and power saving by protecting
only instructions performing pointer arithmetic and control
flow information. This section presents an LLVM compiler
pass that detects critical instructions in an application. Such
instructions should be error-free.

A. Compiler Critical Instruction Identification Analysis

The analysis is similar to an upward exposed uses anal-
ysis1. Starting from the last basic block and traversing the
instructions in reverse execution order we identify obvious
critical instructions. Obvious critical instructions should
meet one of the following criteria :

1) Class I: During the execution of the instruction an
address calculation is performed. For example the lw instruc-
tion of the MIPS architecture. 2) Class II: The instruction
has implicit or explicit impact on the control flow of the
application. For example a branch instruction has explicit
impact on control flow whereas a compare instruction has
implicit impact if the result of is used in the branch.

These instructions process critical information, such as
memory addresses or control flow. Our analysis examines
instructions producing the input operands of obvious critical
instructions to identify sequences of critical instructions that
need to be executed reliably.

Obvious critical instructions are tagged as critical and
depending on criteria met by each instructions some of the
operands used (uses) to compute the definition (def ) of this
instructions are pushed to a bit vector, called GEN. The
vector size is equal to the number of different registers
supported by the architecture. If the instructions are in Class
I, only the operands participating in the address calculation
are pushed to the GEN vector. If the instruction is in Class
II, all operands are pushed in the GEN vector.

When traversing an instruction we check whether it de-
fines a value contained in the GEN vector. If this is the case,
the instruction is tagged as critical, the definition is removed
from the vector and the uses of the new critical instruction
are pushed into the GEN vector.

When reaching the entry point of the basic block the GEN
vector contains all the values x which are used by a critical
instruction s inside the basic block, and there is no definition
of x between s and the beginning of the basic block. After
the procedure traverses the entire block, it propagates the
information to all the predecessors of this block using the
union operator. We apply this operator to the analyzed code
iteratively until there are no changes in the GEN set. The
analysis continues on the basic blocks of the function until
there is no change between consecutive iterations.

1Upward exposed uses: For each definition of a variable, find all uses
that it reaches



(1)add $s1, $0, $0

(2)for:beq $s0, $s1, end

(3)lw $t2, ($s2)

(4)lw $t3, ($s3)

(5)add $t4, $t3, $t2

(6)sw $t4, ($s4)

(7)addi $s2, $s2, 4

(8)addi $s3, $s3, 4

(9)addi $s4, $s4, 4

(10)addi $s1, $s1, 1

(11)j for

(12)end:

GEN={$s0,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s2,$s3,$s4}

GEN={$s3,$s4}

GEN={$s4}

GEN={$s4}

GEN={}

GEN={}

GEN={}

GEN={}

GEN={}

GEN={}

(a) Initial State

(1)add $s1, $0, $0

(2)for:beq $s0, $s1, end

(3)lw $t2, ($s2)

(4)lw $t3, ($s3)

(5)add $t4, $t3, $t2

(6)sw $t4, ($s4)

(7)addi $s2, $s2, 4

(8)addi $s3, $s3, 4

(9)addi $s4, $s4, 4

(10)addi $s1, $s1, 1

(11)j for

(12)end:

GEN={$s0,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

(b) Iteration 1

(1)add $s1, $0, $0

(2)for:beq $s0, $s1, end

(3)lw $t2, ($s2)

(4)lw $t3, ($s3)

(5)add $t4, $t3, $t2

(6)sw $t4, ($s4)

(7)addi $s2, $s2, 4

(8)addi $s3, $s3, 4

(9)addi $s4, $s4, 4

(10)addi $s1, $s1, 1

(11)j for

(12)end:

GEN={$s0,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

GEN={$s0,$s1,$s2,$s3,$s4}

(c) Iteration 2

Figure 1: A simple example of the compiler analysis pass for 3 iterations of the algorithm

Figure 1 shows a simple example. The analysis starts from
the last basic block (node 12) and the GEN set is empty.
The analysis continues by processing instruction 11 which
is the last instruction of the next basic block. Instruction 11
is tagged as critical since it is a control flow instruction.
Instruction 11 has no operands therefore the GEN set
remains empty. Instruction 10-7 are not obvious critical.
Instruction 6 performs address calculation since it is a store
word. The instruction is tagged as critical and the operands
of the instruction that contain addresses are stored inside the
GEN vector. The next instruction is not an obvious critical
one and does not define a register contained in the GEN
vector, hence the instruction is not recognized as critical.
Instructions 4,3 and 2 are identified as critical since they
perform address calculations and branching. All operands
used by these instructions are added in the GEN set. Finally
the analysis moves to the first basic block and identifies
instruction 1 as significant, because it sets a value to register
$s1 which is inside the GEN vector. After the instruction is
processed register $s1 is removed from the GEN set.

The second iteration identifies instructions 10-7 as critical
because the registers defined by those instructions are in the
GEN vector. Each selected instruction deletes the uses from
GEN, and immediately adds back the defs. For example,
instruction 9, deletes and adds register $s4 to bit vector
GEN. The analysis continues without any other additions.
The analysis terminates when no additional instructions are
identified as critical.

III. EVALUATION

In this chapter we use three benchmarks, dct, sobel, and
blackscholes, to validate the compilation analysis pass and
to evaluate the following metrics: 1) the resiliency of the
applications when critical instructions are protected from
errors, and 2) the impact of compiler and programmer
optimizations to the number of protected instructions.

Sobel is a high-pass filter for edge detection in images,
which applies 3x3 pixel block filters to produce the pixel

values of the output image. Discrete Cosine Transformation
(DCT) is a module of video compression kernels, which
transforms a block of 8x8 image pixels to a block of 8x8
frequency coefficients. Blackscholes is a benchmark of the
PARSEC suite [1]. It implements a mathematical model for
a market of derivatives, which calculates the buying and
selling of assets so as to reduce the financial risk.

A. Application Resiliency

To evaluate the resiliency offered by protecting critical
instructions at the hardware level we use GemFI [9], a
fault injection tool that operates on top of Gem5 [2]. We
exploit GemFI features which allow us to inject faults at
different stages of the CPU pipeline which emulates the
x86 Instruction Set Architecture. In the fetch stage, a fault
corrupts a single bit of the instruction being fetched. In the
decoding stage, the selection of registers is corrupted so that
the instruction in question reads from or writes to a different
register. In the execution stage, faults corrupt a single bit
of the computed result value. Finally, faults in the memory
stage corrupt a single bit of the value transferred from/to
memory.

The number of fault injection experiments for each ap-
plication and the type and target of faults are generated
statistically to achieve a 99% confidence level and 1%
error margin. Based on these simulation campaigns, we
statistically estimate how each type of fault impacts the
application, using the following categorization: 1) Program
Failure: The application failed to terminate normally, for
example decoding a corrupted opcode could result to an
Illegal Instruction violation. 2) Program Corruption: The
application succeeds to terminate, however the result is not
acceptable by the end user. 3) Correct: The application pro-
duces a result which is acceptable by the end user however it
is not exactly the same as an error-free execution. 4) Bitwise
exact: The execution resulted at the exact same output as
an error-free execution. 5) Protected: The fault corrupted a
critical instruction but it was corrected by the hardware. The
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Figure 2: Application resiliency when fault injecting different architectural components with/without critical instruction
protection

end result is the same as an error-free execution.

For each benchmark we opt to execute 2 campaigns, the
first one does not protect critical instructions whereas the
second one does. By doing so we can see the additional
resiliency offered by identifying critical instructions.

Figure 2 depicts the results of the fault injection cam-
paigns. Protecting critical instructions offers significant ap-
plication resiliency since in most pipeline stages program
failures are completely eliminated. In the Fetch stage, fail-
ures are not eliminated. Protecting only critical instructions
is not sufficient. x86 instruction set has variable length
instructions. Should a fault corrupt the opcode of the fetched
instruction, it may result in decoding another type of instruc-
tion, with an opcode length different than that of the correct
one. In such a case the binary alignment is corrupted, which
results to a program failure.

Interestingly, injecting faults in the decoding stage does
not cause any failures when critical instructions are pro-
tected. This partially correlates with criticality information.
If an error takes place during the decoding stage, it may
corrupt the selection of a read register used by the instruc-
tion. In turn, if this register does not store any address the
fault will quite probably not manifest as a program failure.
On the other hand if the selection corrupts the selection of
a destination register, and the new faulty destination does
contain a memory location, the location will be overwritten
by the faulty instruction. Therefore an upcoming instruction
which uses this register will fail. In reality though, the fault
does not manifest during the execution of this instruction.

Consequently it cannot be corrected by the hardware.
Finally errors manifested during load store instructions

were all protected by the hardware, since they explicitly
impact address calculation computations.

B. Optimization effects on Critical Instructions

Our goal is to evaluate the correlation of manual and
compiler optimizations to the number of critical instructions.
Our compile time analysis identifies critical instructions in
the application code only and not in the external libraries.
We limit the extent of dependencies to external libraries
to reduce the number of non-analyzed instructions for the
applications under test.

Each benchmark is analyzed under a variety of compiler
optimization scenarios. We gradually increase the extent
of manual optimizations and, thus, programmer’s effort to
optimize the code. Each version is compiled three times
with the extended version of the LLVM: once with compiler
optimizations turned off -O0, once with the optimizations
turned on -O3 and once using the -O3 fast-math flags.

Figure 3 shows the effects of these compiler optimizations
on the number of critical intructions. The x-axis shows
different versions of a benchmark with incremental manual
optimization effort as we move to the right of the x-axis. All
version are compiled with different compiler optimization
flags (O0, O3, O3 –fast-math). In the case of blackscholes
we did not use the –fast-math option since it results to
erroneours executions. The y-axis shows the percentage of
non-critical instructions.



(a) Sobel (b) DCT (c) Blackscholes

Figure 3: Percentage of critical instructions for different versions of each benchmark when compiled with different compiler
optimizations

Compiler and manual optimizations significantly reduce
the number of critical instructions. In the case of Sobel in
the original version has only 0% non-critical instructions
because the application uses branches within a clipping func-
tion. The data used in the clipping function are computed
by the previous statements. Our analysis detects such a
dependency between the statements and identifies them as
critical. The other versions perform the clipping function
using masking operations, therefore the percentage of non-
critical instructions is increased.

C. Instruction Set Characterization

Complex Instruction Set Computers (CISC) often break
a more complex instruction to several low level operations.
For example, a single CISC instruction may load from the
memory, perform an arithmetic operation and store the result
back to the memory. The difference compared with RISC ar-
chitectures is that the latter uses a uniform instruction length
for all instructions and employs strictly separate load/store
instructions. For example, in Intel’s x86, the best known
example of CISC architecture, most instructions have one or
more input operands that they operate on. The majority of
instructions may operate on registers and memory locations.

An architecture such as x86 tends to categorize more
instructions as critical compared with a RISC architecture.
Any instruction which incudes memory addressing is con-
sidered by the analysis as obvious critical. This is because
these instructions are translated during the decoding stage
to multiple micro-operations. Some of the micro-operations
load or store values to the memory, therefore they should
be protected by the hardware since they calculate memory
addresses. The analysis identifies the entire instruction as
critical and effectively all the micro-operations are protected
by the hardware. This restriction imposed by the instruction
set may result to identifying more instructions as critical
than a RISC implementation of the same source code.

IV. RELATED WORK

In [7] the authors categorize instructions in classes,
depending on their expected behavior under the presence

of transient faults. Instructions with negative impact on
the application output are duplicated by the compiler. The
application resiliency is studied in [15] when using some
sort of protection on control flow instructions whereas in
[14], branch instructions are replicated to guarantee correct
execution. Although replication of instructions is considered
as a fault tolerance method [11], when operating below
nominal Vdd values, replicating the same code block under
the same circumstances will deterministically result to the
same faulty behavior. Therefore, replicating an instruction
will not guarantee correct execution when facing timing
violations since both instructions will probably face cor-
ruptions. Multimedia workloads, which are inherently error
tolerant in errors are analyzed in detail in [3]. Based on
their observations the authors address common manufactur-
ing defects. In [10] the authors use Dynamic Dependence
Graphs (DDG) to identify critical instructions. During static
analysis instructions affecting critical instructions are also
considered as critical. These methods are input dependent,
therefore these approaches do not guarantee identification of
all critical instructions. In [4] a profiling-guided static pro-
gram analysis technique and runtime approach is presented.
On compilation instructions are classified as static critical
and non-static critical: the static critical instructions are
further classified into likely critical and likely non-critical
instructions.

All these approaches focus on error coverage and error re-
siliency. In our work we study the correlation of application
resiliency with compiler or hand-made code optimizations.
Our goal is to activate hardware error detection and correc-
tion mechanisms only when application failure is expected.
The remaining errors are ignored and allowed to surface to
the application level. Application failure is expected when
errors corrupt critical instructions. Using a compiler analysis
we identify such instructions and we try to reduce their
numbers using compiler optimizations.

V. CONCLUSIONS

We introduce a compiler analysis technique on the x86
instruction set which identifies critical instructions. Such



instructions are those which perform pointer arithmetic or
control flow. The remaining instructions are non-critical.
Using GemFI, a fault injection tool we simulated a non-
reliable execution environment. In such an environment
errors occur at the different pipeline stages. We quantify the
extra resiliency offered by protecting a subset of the total
number of instruction in three benchmarks, Sobel, DCT,
Blackscholes is quantified.

The results indicate that protecting a subset of the instruc-
tions certainly provides extra fault tolerance against program
failures. We should mention that all failures of the protected
version are observed when errors are injected during the
fetch stage. The fetch stage is vulnerable to faults regardless
the context of the instructions being processed at that point.
Therefore the entire stage should be protected. Moreover,
compiler optimizations in general significantly reduce the
number of critical instructions. Moreover, manual code
optimizations decrease even more the number of critical
instructions. Although in the context of this paper we do
not study the performance and power overhead of protecting
the instructions, we qualitatively assume that the less the
protected instructions the less the overhead.
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