
History-based Piecewise Approximation Scheme for Procedures

Aurangzeb and Rudolf Eigenmann
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN, USA

orangzeb@purdue.edu, eigenman@purdue.edu

Abstract—Approximate computing has emerged as an active
area of research in recent years. A number of techniques have
been proposed to increase performance of applications that
can tolerate a certain degree of inaccuracy. Approximating
functions can offer significant performance improvement but
this opportunity has not yet been fully explored by the approx-
imate computing community. This paper introduces techniques
to perform approximation at the level of functions. We present
our schemes with two flavors and discuss four realizations. We
present results on 90 scientific functions that underscore the
opportunity. We also present results on real applications that
demonstrate the practicality and effectiveness of the idea.

Keywords-approximate computing; function approximation;
history-based piecewise approximation

I. INTRODUCTION

The large majority of today's computer applications pro-
duce exact and reproducible answers. However, not all appli-
cations require 100% accuracy. Many applications in audio,
video, image processing, gaming, information retrieval and
analysis, and machine learning can tolerate inaccuracies.
Such applications have significant potential for performance
improvement in exchange for accuracy. This opportunity has
led to the emergence of the field of approximate computing.
The present paper explores such approximation at the gran-
ularity of functions and provides evidence of the potential
gains.

Function approximation has been pursued in different
well-established fields of Mathematics and Computers such
as Numerical Analysis and Machine Learning and a number
of techniques have been proposed. Among the numerical
analysis techniques, cubic splines and Chebyshev polyno-
mials are generally considered the best function approxi-
mation schemes. Machine learning techniques such as Ar-
tificial Neural Networks (ANNs), Support Vector Machines
(SVMs), and fitness approximation in Genetic Algorithms
(GA) provide good approximation, but their software imple-
mentations are slow and only benefit complex applications
and compute-intensive simulations. The approximate com-
puting community has explored approximation at the levels
of hardware, architecture, data types, instructions, loops, and
synchronization blocks, but not so much at the level of
procedures. Two attempts related to function approximation
are a neural network approach [1] and an approximate

memoization technique [2]. The former is shown to be
effective only when implemented in hardware and the lat-
ter is described as a pattern-based approximation scheme
applicable to map pattern in data-parallel applications and
only targets GPU applications. By contrast, our schemes
target general applications and do not require customized
hardware.

This paper makes the following contributions:
1) We introduce a function approximation scheme that

we call history-based piecewise approximation and
explore several options.

2) We show that mathematical and scientific func-
tions can be approximated and used in applications
amenable to approximate computing by presenting
results on 90 such functions from the GNU Scien-
tific Library (GSL) [3], [4]. Results show that our
approximation scheme was able to speed up 92% of
all functions. For 71% of the functions, the normalized
RMS error in the approximated result was very small
(0.06 on average) with 9.3x speedup, on average.
Whereas for another 15% of functions it was 0.49 with
an average speedup of 9.5x.

3) We demonstrate the feasibility and practicality of the
approach by presenting results on three real applica-
tions. The average speedup for these applications is
1.74x with 0.5% error, on average.

The rest of the paper is organized as follows. In Section
II, we introduce and describe a history-based piecewise ap-
proximation scheme with two flavors and their realizations.
In Section III, we present results of our experiments with
mathematical functions and applications. We conclude in
Section VI after presenting future work in Section IV and
related work in Section V.

II. HISTORY-BASED PIECEWISE APPROXIMATION

Polynomial approximation is one of the well-known Nu-
merical Analysis techniques for function approximation.
Theoretically, according to the Weierstrass theorem, any con-
tinuous function can be approximated well by a polynomial.
However, the kind and degree of polynomial as well as the
data points used to find the coefficients of the polynomial
impact the approximation and are difficult to determine in
practice. Moreover, approximating a function using a single

polynomial for the entire input range of the function does
not produce good results. Piecewise approximation, in which
the input range of the function is split into different regions
and a polynomial is used for approximation in each region,
yields better approximation results. However, deciding on
how to split the input range and which polynomials to
use are again difficult choices to make. We introduce a
piecewise approximation scheme in which the regions are
formed based on past history of the function invocations
and lower order polynomials are used for approximation; we
call it history-based piecewise approximation. We introduce
two sub-schemes, non-uniform piecewise approximation,
and uniform piecewise approximation.

During a training phase, a history of input and output
values of the original function is recorded. There are dif-
ferent scenarios for training, such as offline, static online
(at the beginning of the application execution) and dynamic
online training. The history is then used to form regions
for piecewise approximation and compute the coefficients
of the polynomials used for approximating each region. In
the production phase, for each function input, a search is
performed on the history to find the region that the input falls
into. The corresponding polynomial for that region is then
used to compute the output. The history, lookup mechanism,
and the polynomials used affect the speed of approximation
and thus the overall performance.

A. History-based Non-uniform Piecewise Approximation

Non-uniform piecewise approximation forms regions that
are of non-uniform size. Formation of these regions is
strictly dictated by the learnt history of function invoca-
tion during the training phase, which for this scheme is
currently performed in the beginning of the application
execution. The non-uniform nature of the scheme allows
non-uniform concentration of history elements, which can
improve approximations for hot/dense input regions. The
current approximation strategy uses either a 0-degree (a
constant) or a 1-degree (a straight line) polynomial but
higher-order polynomials can also be used.

We have realized this scheme in three different ways
depending on the underlying storage and lookup mechanism.

1) Binary Search on Sorted Array: This method allows
recording input-output values of the function during training
in the order they appear. The array is then sorted based
on input values using Quick Sort at the end of the train-
ing phase. During the production phase, binary search is
performed on the sorted array to find the region an input
falls into. Since the inputs are sorted, it is easy to find the
corresponding region. The size of the array depends on the
length of training; the evaluation section reports on different
options. One limitation of this scheme is that it does not
allow the history to grow once the first production phase
has started and thus it cannot support dynamic training.

2) Binary Search Tree: This realization uses a Binary
Search Tree for storage and lookup. During training, input-
output pairs are stored as nodes in the tree. These history
elements are added in the tree as they arrive. Inserting a
node maintains the binary search tree property: for any node
with input value v, all input values in the left sub-tree are
less than v, and all input values in the right sub-tree are
greater than v. Because this property is maintained during
insertion, no extra sorting is needed at the end of training.
This implementation allows the history to grow dynamically
during the application run. It also supports non-uniform
concentration of history elements.

3) Red-Black Tree: For general cases, binary search trees
offer a reasonable storage and lookup mechanism, but their
structure is dependent on the sequence in which history
elements are added. In the worst case, if the history elements
during training appear in a way that their input values are in
ascending/descending order, a binary search tree can end up
being a linear list and require O(N) accesses for a search.
To avoid this worst-case scenario, the third realization uses
red-black trees. Red-Black trees are approximately balanced.
Balance is achieved using an extra red or black color
attribute for all nodes and enforcing the red-black property in
addition to the binary search tree property during insertion.
The red-black property is as follows: every node is either
red or black, the root and all leaves are black, if a node
is red then both children are black, and for each node, all
paths from that node to descendant leaves contain the same
number of black nodes. The height of a red-black tree with n
internal nodes is at most 2log(n+1). We used the algorithms
mentioned in [5] for insertion of nodes.

B. History-based Uniform Piecewise Approximation

In this scheme, the entire range of input values is split into
uniform regions. This range is found through the history
either via a profile run or by guessing based on the first
m invocations of the function. This scheme does not allow
non-uniform concentration of history elements, which may
negatively affect the approximation results in the hot/dense
regions of the input if there are a lot of variations in the
output in those regions and the size of uniform regions is
not small enough to be able to capture them.

We realized our uniform piecewise approximation scheme
using a hash-table. The overall range of input values for a
function is uniformly split into different regions and mapped
to the hash-table such that the inputs in different regions
hash to different buckets in the hash-table. The hashing
function ensures this mapping. Using hash-based storage and
lookup offers a performance benefit, but does not support
dynamic expansion. Our current scheme finds the overall
range of input through profiling. This scheme uses a slightly
different training mechanism than the non-uniform scheme.
The buckets in the hash-table are initialized to be in an
untrained state. The first input value in a region, whenever it

appears during the application execution, serves to train the
polynomial for the region it falls into. For later input values
in that region, approximation is performed by evaluating
the polynomial whose coefficients were determined during
the training. In the current version, one history value is
stored per region and a constant (0-degree polynomial) is
used for approximation. The same scheme can support other
variants, such that multiple values are stored for each region
and higher-order polynomials are employed to approximate
results.

Discussion

Table I summarizes the properties of all these techniques.
Tree-based schemes naturally support extensible history and
thus dynamic training. They also support non-uniform con-
centrations of input values so that they are able to better
approximate against an input value that falls in the dense
region of input. However, they are slower as compared to the
uniform scheme, which on the other hand, does not allow the
history to grow and does not support non-uniform concentra-
tion of inputs. These techniques complement each other and
could be combined in an overall piecewise approximation
scheme.

III. EVALUATION

A. Results for 90 Functions from GSL

Below we present our results for many mathematical and
scientific functions from GSL (GNU Scientific Library) [3],
[4], which is a widely used open source numerical library for
C/C++, distributed under the GNU General Public License.
Table II summarizes the results of approximating functions
using our history-based uniform piecewise scheme. Testing
is performed on a machine with Intel Core2 Duo CPU
running at 3GHz, 6144 KB cache and 4GB of RAM, running
Ubuntu 12.04. For each function, we report speedup against
the RMS error in the results due to approximation. The
reported RMS is normalized by the average actual output
of the function for the tested inputs. We also describe
the overall range of the input used in the experiment for
each function and the size of the region in our uniform
piecewise approximation scheme. We split the input range
into 5000 regions. We called each function 1,000,000 times
with different random inputs in the given input range. This
number is realistic in real applications as can be seen in
column four of Table III. How much error for a given
function can be tolerated, would depend on the applications,
but results show that most of the functions are successfully
approximated with an RMS error that may be tolerable by
many applications. Out of a total of 90 functions, 71% report
a normalized RMS error of 0.06, on average, for an average
speedup of 9.3x. 15% report a normalized RMS error of
0.49, on average, for an average speedup of 9.5x. The
remaining 14% report a large error (188.44) for a speedup of
12x. The scheme was able to speedup 92% of all functions.

B. Results for Applications

We have evaluated our approximation schemes on two
applications, Blackscholes and Swaptions, from the Parsec
Benchmark Suite [6] and a Convolutional Neural Network
(CNN) application for handwritten digit detection (CNN-
HDD). Table III presents results using the uniform scheme.
For each application, the function that was approximated
is listed. We determined the upper bound for the speedup
each application can achieve through function approximation
by temporarily altering the original function such that it
immediately returns the supplied input as a result. For the
CNN-HDD application, our error metric is the percentage
of images that were not detected by the application, for
others it is the RMS error normalized by the average output.
CNN-HDD resulted in a speedup of 1.68x and detected
9897 images out of 9899 (0.02% images could not be
detected by the approximated application). For Blackscholes,
the speedup is 2.27x against an RMS error of 0.048. For
Swaptions, the speedup is 1.28x and the RMS error is 0.005.
The average speedup of applications is 1.74x. To find the
average error across applications we calculated the percent-
age error for Blackscholes and Swaptions, which is 1.03%
and 0.6% respectively. The average percentage error for
three applications is 0.5%. We used the uniform piecewise
approximation to obtain these results. For CNN-HDD, the
scheme used 702 regions of size 0.05, for Blackscholes,
7200 of size 0.005, and for Swaptions, 200 of size 0.005.

C. Comparison of Techniques and Effect of Training

Figure 1 compares the non-uniform techniques in terms
of speedup and normalized RMS error for the Blackscholes
application. The binary search technique turns out to be
competitive when the history is small, but for a large history
it is taking more time to sort the array, whereas the scheme
using red-black trees performs the best among non-uniform
schemes. This figure also depicts the effect of training
on speedup and error. Forming more regions helps better
approximate at the cost of some decrease in speedup. In
terms of approximation results, the three approaches give
similar results. This is because their non-uniform regions
are formed by the training history, which is the same for all
schemes. Figure 2 shows the results of the uniform scheme
used to test Blackscholes. Comparing figures 1 and 2, the
non-uniform schemes give better approximation results but
they are slower than the uniform scheme.

D. Comparison with State of the Art

We compared our schemes with the best known Numeri-
cal Analysis techniques, namely, polynomial approximation,
Chebyshev polynomial approximation, and cubic splines.
We used monomial basis (1, x, x2, x3, ...) for polynomial
approximation. Chebyshev approximation chooses its own
data-points and for polynomial approximation using mon-
mials and cubic spline we tried two options - the first

Table I
PROPERTIES OF HISTORY-BASED PIECEWISE APPROXIMATION SCHEMES

Scheme Storage & Lookup Fixed/Extendable Lookup Complexity Supports Non-uniform Concentration? Order
Non-uniform Array + Binary search Fixed O(log N) Yes Sorted

Non-uniform Binary search tree (BST) Extendable >O(log N) Yes Binary search tree property

Non-uniform Red-black tree Extendable ~O(log N) Yes BST + red-black property

Uniform Hash-table Fixed O(1) No Ranges are sorted

Table II
RESULTS OF APPLYING HISTORY-BASED UNIFORM PIECEWISE APPROXIMATION ON FUNCTIONS FROM GSL

Input Range
Region

Size
Function

RMS
Error

Speedup Function
RMS
Error

Speedup Function
RMS
Error

Speedup

-1000.0 - 1000.0 0.4

sf bessel j2 0.4835 9.04 sf legendre P2 0.0006 0.39 asinh 0.0011 2.55

sf bessel i0 scaled 0.8935 0.50 sf legendre P3 0.0009 0.43 sf sin 0.1805 4.20

sf dawson 1.0373 7.49 sf clausen 0.2122 6.53 sf cos 0.1801 3.95

sf bessel i1 scaled 0.3003 5.09 sf bessel J0 0.2491 16.44 sf Si 0.0044 18.38

sf bessel i2 scaled 0.0784 5.12 sf bessel J1 0.2477 17.93 sf dilog 0.0007 7.30

sf atanint 0.0009 6.42 sf bessel j0 0.6977 4.91 sf lncosh 0.0003 0.46

sf psi 1piy 0.0011 2.16 sf bessel j1 0.6559 8.97

0.0 - 1000.0 0.2

sf bessel y2 697.93 9.52 sf bessel I0 scaled 0.0554 6.46 log1p 0.0004 2.30

sf bessel k0 scaled 60.843 0.51 sf bessel I1 scaled 0.0227 6.39 sf debye 1 0.0737 3.97

sf bessel k1 scaled 491.51 0.72 sf fermi dirac 2 0.0004 2.05 sf debye 2 0.3188 4.57

sf fermi dirac 0 0.0002 7.08 sf fermi dirac 3half 0.0004 38.91 sf log 0.0023 2.38

sf fermi dirac 1 0.0003 3.32 sf bessel Y0 0.2992 19.95 sf log abs 0.0023 2.44

sf fermi dirac mhalf 0.0002 37.35 sf bessel Y1 14.541 21.42 sf psi 0.1363 6.57

sf fermi dirac half 0.0002 38.71 sf bessel K0 scaled 0.1470 4.82 sf lnsinh 0.0002 0.58

sf lambert W0 0.0004 26.70 sf bessel K1 scaled 9.5141 4.83 sf psi 1 494.29 53.86

sf lambert Wm1 0.0004 27.68 sf bessel y0 78.269 7.94 sf Ci 2.6739 22.50

sf log 1plusx 0.0004 2.45 sf log 1plusx mx 0.0002 2.48 sf bessel y1 496.56 10.17

-200.0 - 200.0 0.08

sf bessel I0 0.3251 8.57 sf expint E1 0.4165 9.56 sf Chi 0.3239 18.58

sf bessel I1 0.3251 8.41 sf exprel 2 0.4909 3.52 sf exp 0.4986 3.10

sf expint Ei 0.4947 9.87 sf expint E2 0.4165 11.04 sf exprel 0.4947 3.44

sf expm1 0.4986 3.26 sf Shi 0.3239 18.45

0.0 - 400.0 0.08 sf debye 3 0.1174 6.59

0.001 - 200.0 0.04 sf bessel K0 1.7186 8.72 sf bessel K1 99.966 8.84

-50.0 - 50.0 0.02
cdf ugaussian P 0.0009 3.65 sf erf Q 0.0009 6.49 sf erf 0.0010 6.70

cdf ugaussian Q 0.0009 3.67 ran ugaussian pdf 0.0303 3.72 sf erfc 0.0010 6.10

0.0 - 50.0 0.01

sf fermi dirac m1 0.0002 4.13 sf transport 2 0.0003 10.39 sf expint 3 0.0005 1.02

sf lngamma 0.0003 7.48 sf transport 3 0.0002 10.93 sf gamma 0.1681 12.86

sf gammastar 0.0700 6.16 sf transport 4 0.0002 11.43 sf eta 0.0001 21.49

sf gammainv 0.0123 14.37 sf transport 5 0.0002 11.20

0.0 - 100.0 0.02
sf debye 4 0.0171 12.12 sf synchrotron 2 0.0837 7.87 sf debye 6 0.0198 12.40

sf debye 5 0.0187 12.71 sf synchrotron 1 0.1049 8.95

-100.0 - 100.0 0.04 expm1 0.1736 3.04

-100.0 - 1000.0 0.22 sf log erfc 0.0003 3.81

-150.0 - 0.0 0.03 sf zetam1 0.6295 40.20

-35.0 - 35.0 0.014 sf erf Z 0.0179 3.38

Table III
APPLICATIONS AND RESULTS FOR APPROXIMATION USING THE UNIFORM PIECEWISE SCHEME

Application Domain Function # Invocations
Max Possible

Speedup
Error

Error
Metric

Application
Speedup

Regions, Region Size,
Memory (KB)

CNN-HDD Machine Learning tanh 8,010,000 1.8 0.02% %undetected images 1.68 702, 0.05, 5.6

Blackscholes Financial CNDF 13,107,200 2.48 0.048 Normalized RMS error 2.27 7200, 0.005, 57.6

Swaptions Financial CumNormalInv 76,800,000 1.33 0.005 Normalized RMS error 1.28 200, 0.005, 1.6

Figure 1. Comparison of non-uniform techniques for Blackscholes
application and effect of training on speedup and error.

Figure 2. Uniform scheme for Blackscholes application.

n+1 inputs and evenly spaced data-points over the entire
input range of the function. The approximation results of
the latter schemes with the first option (first n+1 inputs
as data-points) were poor (100% - 91% error). But for
evenly spaced data-points they were good and are reported
in figures 3 and 4. To compare the schemes, we picked the
best-case for each, considering both speedup and percentage
error. Cubic splines and non-uniform techniques can result
in better approximation than the uniform scheme with a
much less speedup but the best case we picked for these
schemes also considered the speedup. Figure 3 compares the
speedup of all techniques for their best-case; whereas figure
4 compares the percentage error for the best-case of each
of the techniques for the CNN-HDD application. The best-
cases of our schemes outperform those of numerical analysis
techniques in terms of both speedup and percentage error.

IV. FUTURE WORK

The presented work has laid foundations and demon-
strated the potential of approximation at the level of pro-
cedures. In future work, we will support dynamic training
in our piecewise schemes and come up with an efficient and
automated way of choosing techniques and their parameters.
We will also combine the proposed complementary schemes
in an overall piecewise approximation scheme. Furthermore,

Figure 3. Speedup comparison of the best-case of history-based schemes
with that of numerical analysis techniques for the CNN-HDD application.

Figure 4. Error comparison of the best-case of history-based schemes with
that of numerical analysis techniques for the CNN-HDD application.

we will extend the techniques to support multivariate prob-
lems. In the presented work, we manually added the approx-
imation code in the application source code. We will develop
compiler techniques to perform these tasks automatically. To
set different parameters of the approximation scheme, we
also plan to develop automatic tuning techniques.

V. RELATED WORK

Approximating functions has been a major topic in the
field of Numerical Analysis. Different techniques like series
expansion, interpolation, polynomial approximation [7], and
piecewise approximation (splines) aim at approximating
functions [8]. Among these, Chebyshev polynomials and
cubic splines are generally considered the best approxima-
tion schemes. Although our scheme falls in the category
of piecewise approximation, it is different from other tech-
niques in many ways. The major difference is the learning
ability of our scheme. The other schemes statically replace
the function with a polynomial (or polynomials) whereas
our scheme learns to approximate. Among other differences
are that: other schemes do not keep history, which our
scheme consults as needed; other schemes do not have a
strict criterion regarding how regions are formed, we form
regions based on the history; and other approaches generally

use fewer regions and high-order polynomials, whereas we
use many regions and lower-order polynomials.

Machine learning also offers different techniques that can
be used to approximate functions. Among these are artificial
neural networks (ANNs), support vector machines (SVMs)
and fitness approximations [9] used in Genetic Algorithms,
to name a few. These techniques, however, are only useful
for functions that are computationally intensive such as
simulations or fitness functions in evolutionary algorithms
for complex real-world applications.

The approximate computing community has explored ap-
proximation at the levels of hardware [10], architecture [11],
data types [12], instructions, loops [13], and synchronization
blocks [14], but not so much at the level of procedures. The
two attempts that can be said to be applicable to function
approximation are a neural network [1] and an approximate
memoization technique [2]. The first paper shows that the
neural network approach towards approximation for general
applications can be effective only if implemented in hard-
ware, as the software implementations degrade performance.
This result is further confirmed by [15]. The second paper [2]
only focuses on GPU applications and describes approximate
memoization as a pattern-based approximation technique for
data-parallel applications that is applicable to map patterns
found in such applications. This approximation scheme
also differs from ours as it uses table lookup to conduct
approximate memoization; our scheme uses history-based
piecewise approximation with polynomials.

VI. CONCLUSION

While the field of approximate computing has seen sig-
nificant growth in recent years, many opportunities remain.
Approximating procedures for speed is one such opportunity,
which we have explored in this paper. We have introduced
a history-based piecewise approximation scheme with two
variants, one that forms non-uniform regions and the other
that forms uniform regions. We have also described four
different realizations of these schemes. Our experiments
with 90 functions from GSL show an average speedup of
9.3x for 71% of functions with a small normalized RMS
error (0.06) in approximation, and 9.5x for another 15% of
functions with a normalized RMS error of 0.49. Our results
on applications demonstrate that it is practical to apply
the proposed schemes on real applications with substantial
performance benefits. We have presented results on three
applications, one of which, CNN-HDD represents the class
of CNN and deep learning neural network applications. We
expect our results to hold for the class of applications. The
average speedup of three applications using our scheme is
1.74x with an average error of 0.5%.

REFERENCES

[1] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neu-
ral acceleration for general-purpose approximate programs,”

in Proceedings of the 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. IEEE Computer
Society, 2012, pp. 449–460.

[2] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox:
Pattern-based approximation for data parallel applications,” in
ACM SIGARCH Computer Architecture News, vol. 42, no. 1.
ACM, 2014, pp. 35–50.

[3] GNU, “GSL,” http://www.gnu.org/software/gsl/.

[4] B. Gough, GNU scientific library reference manual. Network
Theory Ltd., 2009.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
“Introduction to algorithms 2nd edition,” 2001.

[6] C. Bienia and K. Li, Benchmarking modern multiprocessors.
Princeton University USA, 2011.

[7] R. Bellman, R. Kalaba, and B. Kotkin, “Polynomial
approximation–a new computational technique in dynamic
programming: Allocation processes,” Mathematics of Com-
putation, vol. 17, no. 82, pp. 155–161, 1963.

[8] P. J. Davis, Interpolation and approximation. Courier
Corporation, 1975.

[9] Y. Jin and B. Sendhoff, “Fitness approximation in evolution-
ary computation-a survey,” in Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan Kaufmann
Publishers Inc., 2002, pp. 1105–1112.

[10] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and
A. Raghunathan, “Salsa: systematic logic synthesis of ap-
proximate circuits,” in Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012, pp. 796–801.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Ar-
chitecture support for disciplined approximate programming,”
in ACM SIGPLAN Notices, vol. 47, no. 4. ACM, 2012, pp.
301–312.

[12] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman, “Enerj: Approximate data types
for safe and general low-power computation,” in ACM SIG-
PLAN Notices, vol. 46, no. 6. ACM, 2011, pp. 164–174.

[13] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard, “Managing performance vs. accuracy trade-offs
with loop perforation,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM, 2011, pp. 124–
134.

[14] M. C. Rinard, “Unsynchronized techniques for approximate
parallel computing,” in RACES Workshop, 2012.

[15] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Li-
pasti, A. Nere, S. Qiu, M. Sebag, and O. Temam, “Benchnn:
On the broad potential application scope of hardware neural
network accelerators,” in Workload Characterization (IISWC),
2012 IEEE International Symposium on. IEEE, 2012, pp.
36–45.

