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Measuring performance in HPC: TOP500

Initially designed in ~1979 to provide information on execution time to solve a dense linear system

From the '90 considered de-facto as the main metric to rank supercomputers

Provide a reasonable indication of speed vs. problem size 

Emphasizes FLOPs and peak performance (do not account for network, bandwidth, energy, etc.)

Source: www.top500.org
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Measuring performance in HPC: HPCG

Introduced in 2013 to better represent today's real applications (and maybe replace HPL in the future?)

Source: http://www.hpcg-benchmark.org 

November 2015

NOTE: Sequoia, 3rd in HPL, would 

score ~0.33 PFlops in HPCG 

(projection from Mira and JUQUEEN)

Emphasis not only on Flops, but also on memory bandwidth and interconnects

First positions ranking is similar to HPL, with one outlier

Specific code optimization impact a lot performances, as well as the Nx-Ny-Nz shape of the domain

Measure performances w.r.t. a regular stencil problem: what about more types of sparse matrices?

http://www.hpcg-benchmark.org/
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Measuring performance in HPC: GREEN500 (1)

Introduced in 2007 to complement TOP500 and rank top supercomputers by energy efficiency

Increased energy awareness

Data from www.green500.org

IBM BG/Q

~3.5 in 3 years w.r.t. IBM BG/Q

http://www.green500.org/
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Measuring performance in HPC: GREEN500 (2)

Introduced in 2007 to complement TOP500 and rank top supercomputers by energy efficiency

Increased energy awareness

Do not promote large supercomputers (do not account for problem size and scalability)

Measure energy per Flop and not energy-to-solution

Source: www.green500.org (November 2015)

No large system in first 

10 positions!

http://www.green500.org/
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Race to Exascale: are we getting there for 2020?

… in theory yes, but in practice no!

Data from www.green500.org

DOW target for 2020: 20 MWatt/EXAFlop

How an ideal HPC metric should be designed to drive hardware development?

Based on many different real applications (e.g., Colella's Dwarf approach)

Time-to-solution vs. problem size

Energy-to-solution vs. problem size } Scalability (strong and weak)

http://www.green500.org/


An Extreme-Scale Implicit Solver for Complex PDEs:
Highly Heterogeneous Flow in Earth's Mantle

(ACM Gordon Bell Winner 2015)

J. Rudi (UT Austin), A.C.I. Malossi (IBM), T. Isaac (UT Austin), 
G. Stadler (NYU), M. Gurnis (Caltech),  P.W.J. Staar (IBM), Y. Ineichen (IBM), 

C. Bekas (IBM), A. Curioni (IBM), and O. Ghattas (UT Austin)
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Mantle convection and plate tectonics

 Mantle convection is the thermal convection in the Earth’s upper 3000 km∼

 It controls the thermal and geological evolution of the Earth

 Solid rock in the mantle moves like viscous incompressible fluid on time scales of millions of years

 Driver for plate tectonics, earthquakes, volcanos, tsunamis

 Main drivers of plate motion: negative buoyancy forces or convective shear traction?

 Key process governing occurrence of great earthquakes: material properties between the plates or tectonic 

stress?
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What we know (the data)

 Accurate present-day plate motion (from GPS)

 Topography (indicates traction normal to Earth’s surface)

 State of stress between plates and for slabs/subducted plates (from earthquakes)

 Historic plate motion for last few 100M yrs (from magnetic orientation in rocks/plants/animals)

 Rock rheology extrapolated from laboratory experiments (very different temperature/pressure/time scales)

 Images of present-day Earth structure (by correlating seismic wave speed with temperature)

What we would like to learn/infer (from data+models)

 Main drivers of plate motion: negative buoyancy forces or 

convective shear traction

 Energy dissipation in plate bending zones; strength of 

plate coupling

 Earth structure and history

 Role of slab (=subducted plate) geometries
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Severe challenges for parallel scalable solvers

 Severe nonlinearity, heterogeneity & anisotropy of the Earth’s rheology

 6 orders of magnitude viscosity contrast; sharp viscosity gradients at plate 

boundaries

 Wide range of spatial scales and highly localized features w.r.t. Earth 

radius ( 6371 km): plate thickness 50 km & shearing zones at plate ∼ ∼
boundaries <5 km

 Desired resolution of 1 km results in O(10∼ 12) unknowns on a uniform 

mesh of Earth’s mantle, so adaptive mesh refinement is essential

 High-order discretization essential for maximizing accuracy per memop

 Locally mass-conserving discretization essential for preserving physically 

meaningful flowfields; achieved via discontinuous pressure approximation

 State of art in extreme-scale implicit solvers: most or all of: linear, 

constant coefficient, scalar, low order, uniformly-refined meshes, <500K 

cores
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Inexact Newton-Krylov nonlinear solver

Rheology is shear-thinning with plastic yielding, and upper/lower viscosity bounds; exponential w.r.t. temperature:

Newton step is computed as (inexact) solution of:

 Full Newton Jacobian via regularized plastic yielding and viscosity bounds

 4th order anisotropic tensor viscosity arises in differentiating strain-rate-dependent viscosity

 Inexact Newton–Krylov via Eisenstat–Walker termination

 Globalization via grid continuation and H−1 norm-based line search



© 2016 IBM Corporation 12

Linear solver: preconditioned Krylov subspace method
 GMRES with upper triangular block preconditioning:

 Approximate viscous block inverse                       via multigrid V-cycle

 Inverse Schur complement approximation, 

 Inverse viscosity-weighted mass matrix typically used to approximate Schur complement, i.e., 

 Spectrally equivalent to Schur complement (Wathen/Silvester/Elman for constant viscosity, Olshanskii et al. 

for varying viscosity)

 We use improved version of BFBT/Least Squares Commutator

with optimally-chosen diagonal scaling

                     too expensive and memory intensive to construct; approximate it by                      , i.e. 

continuous anisotropic Poisson operator with heterogeneous tensor coefficient 
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Discretization and adaptive mesh refinement

 High-order finite element approximation

 Adaptively-refined h-nonconforming forest-of-octree-based meshes

 Scalable fast parallel mesh refinement/coarsening, 2:1 mesh balancing, and repartitioning via p4est library

 Linear constraints on discretization at nonconforming interfaces to induce conforming FE approximation

 Inf-sup stable velocity-pressure pairings

 Locally mass conservative via discontinuous pressure space

 Fast, tensorized matrix-free application of finite element matrices

More details in:

C. Burstedde, L. C. Wilcox, O. Ghattas. p4est: 

Scalable Algorithms for Parallel Adaptive 

Mesh Refinement on Forests of Octrees. 

SIAM J. Sci. Comp. 33(3), 1103-1133, 2011.
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Parallel adaptive high-order spectral-geometric multigrid

 The multigrid hierarchy of nested meshes is generated from an adaptively refined octree-based mesh via 

spectral-geometric coarsening

 Parallel repartitioning of coarser meshes for load-balancing (sufficiently coarse meshes on subsets of cores)

 High-order L2-projection of fields on coarser levels (restriction/interpolation are adjoints of each other in L2-sense)

 Re-discretization of PDEs at coarser geometric multigrid levels

 Chebyshev accelerated Jacobi smoother (PETSc) with tensorized matrix-free high-order stiffness apply

 Coarse grid solver: AMG (PETSc’s GAMG), invoked on small core counts
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Implementation optimizations for BG/Q (200x speedup)

A) Before optimizations

B) Reduction of blocking MPI communication 

C) Minimization of integer operations & cache misses 

D) Optimization of element-local derivatives; SIMD vectorization

E) OpenMP threading of matrix-free apply loops (e.g. multigrid smoothing, intergrid projection) 

F) MPI communication reduction, overlapping with computations, OpenMP threading in intergrid operators

G) Finite element kernel optimizations (e.g. increase of flop-byte ratio, consecutive memory access, pipelining)

H) Low-level optimizations (e.g. boundary condition enforcement, interpolation of hanging finite element nodes)



© 2016 IBM Corporation 16

Weak scalability on Sequoia BG/Q: solver and full code

 Performance normalized by time and number of GMRES iterations

 Numbers indicate parallel efficiency w.r.t. ideal speedup (baseline = 1 rack)

 Red indicates linear solver (10 iterations) only

 Green indicates projected total runtime (includes measured I/O and setup time and estimate of total solver 

iterations to convergence)

 Largest problem size has 602 billion DOF on 96 racks
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Strong scalability on Sequoia BG/Q: solver and full code

 Performance normalized by time and number of GMRES iterations

 Numbers indicate parallel efficiency w.r.t. ideal speedup (baseline = 1 rack)

 Red indicates linear solver (10 iterations) only

 Green indicates projected total runtime (includes measured I/O and setup time and estimate of total solver 

iterations to convergence)

 Problem size fixed at 8.3 billion DOF
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Node performance on Sequoia BG/Q: weak scalability

 MatVecs and intergrid operators within Stokes solves

 Highly optimized matrix-free MatVecs dominate with 80% of time∼

 MatVecs and intergrid times consistent across 1 to 96 racks
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MPI communication on Sequoia BG/Q: weak scalability

 Percentage of time spent in MPI communication remains nearly constant

 64 rack aberration due to lack of 5D torus connectivity in particular configuration

 Max. communication time occur in finer GMG levels (expected for multigrid)

 Min. communication time is more important and always below 3%

 Send/Receive well hidden behind computation
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Implications for mantle flow modeling

Total normal stress:

 North-westward motion of Pacific Plate (arrows) and 

total normal stress field at surface (color coded)

 Forward prediction of width ( 50 km) and depth ( 10 ∼ ∼
km) of oceanic trenches along plate boundaries on 

global scale while predicting plate motions

 First time in a global scale mantle model with plate 

boundaries

Sensitivity to plate boundary thickness & mesh:

 Comparison of plate velocities: low-fidelity model (left) 

and high-fidelity model (right) with thinner plate 

boundaries and finer mesh resolution

 Significant sensitivity of plate velocities of the Cocos 

Plate (in center) is observed



Solving Dense Symmetric Positive Definite (SPD)
Linear Systems
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Solving dense SPD linear systems

Consider a generic SPD linear system:

Ax = b
 

Typically this is a “no-brainer”: use Cholesky, BLAS3, thus optimal... but is it? 

A = RRT 

R is upper triangular. Then solving Ax = b becomes 

X = A-1b = (RTR)-1b = R-TR-1b

 Inverting (solving: back substitution) triangular matrices is cheap: O(nInverting (solving: back substitution) triangular matrices is cheap: O(n22)  )  

 But the Cholesky decomposition costs O(nBut the Cholesky decomposition costs O(n33))

 With n = 1M, already requires ~Exaflop resources! With n = 1M, already requires ~Exaflop resources! Can we do better? Can we accelerate?Can we do better? Can we accelerate?
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Dive in the past: Iterative Refinement (IR)

Consider the linear system: Ax = b and assume we have an initial “guess” x0

1) Compute the residual: r = b - Ax0

2) Solve for the residual: Ad = r

3) Update the solution:  x1 = x0 + d

Repeat steps 1-3 if remainder is not small enough: ||r||2 < tol  

What if steps 1-3 could be done in infinite precision (no rounding errors):

  d = A-1r = A-1(b - Ax0) 

  d = x - (A-1A)x0 = x - x0

  x1 = x0 + x - x0 = x

Thus, we would have a completely accurate result in 1 step! But, round-off is inevitable. So, why does IR work?

Computing r and d “accurately enough” is adequate to bring improvement to x1
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Why low-precision iterative refinement works?

Theorem: 

Low-Precision IR converges so long as the solver we use for a system Ay = c satisfies:

(A + E) y’ = c,        ||A-1 E||∞ < 1

where y’ is the computed solution

Key observations:

 Can we relax solver accuracy? Yes

 Can we use “dirty/noisy” solvers? Yes
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Mixed precision iterative refinement with Cholesky

Consider two modes of machine precision:

Low Precision: LP / High Precision: HP 

1) Compute the Cholesky factorization: A=RTR. Cost: O(1/3n3) ACCELERATION
2) Compute initial solution: RT(R x0) = b. Cost: O(n2)
3) Compute initial residual: r0 = b - Ax0. Cost: O(n2) 
4) Initialize counter k = 0
5) Repeat

(1) Solve for residual: RT(R dk) = rk Cost: O(n2)
(2) Update solution: xk+1 =  xk + dk Cost: O(n)
(3) Compute residual: rk+1 = b - Axk+1 Cost: O(n2)
(4) Check tolerance: ||rk+1|| < tol
(5) Update counter k = k + 1

Key properties:
 Overall cost O(1/3n3) is performed in low precision. Cost in high precision is O(n2)
 We can take great advantage of fast single precision hardware!
 We benefit from reduced memory traffic (compare 4 bytes of IEEE single precision to 8 bytes for IEEE double p.)
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Mixed precision iterative refinement with Conjugate Gradient

The cubic complexity of standard iterative refinement stems from the Cholesky decompositionThe cubic complexity of standard iterative refinement stems from the Cholesky decomposition

We saw that we could utilize a significantly less accurate solver, therefore we can:We saw that we could utilize a significantly less accurate solver, therefore we can:
 Substitute the dense solver (Cholesky based) with an iterative one (CG for SPD linear systems)Substitute the dense solver (Cholesky based) with an iterative one (CG for SPD linear systems)
 Perform only a small (constant) number of CG steps, p<<nPerform only a small (constant) number of CG steps, p<<n

Low Precision: LP / High Precision: HP 

1) Compute initial solution: x0 = CG(A, b, p) Cost: O(pn2)
2) Compute initial residual: r0 = b - Ax0. Cost: O(n2) 
3) Initialize counter k = 0
4) Repeat

(1) Solve for residual:  dk = CG(A, rk, p) Cost: O(pn2)
(2) Update solution: xk+1 = xk + dk Cost: O(n)
(3) Compute residual: rk+1 = b - Axk+1 Cost: O(n2)
(4) Check tolerance: ||rk+1|| < tol
(5) Update counter k = k + 1

Key property:
 Cost in low precision reduces from O(n3) to O(pkn2). Cost in high precision is O(kn2)
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Results scalability: CG IR vs Cholesky IR

Next step (TODO): test on larger machines, e.g., 1-2 BG/Q racks
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Can we push for more?

Data Analytics – working with covariance matrices:

Typically they exhibit a decaying behavior away from the main diagonal. What if we make it banded? Converges!  

CHOLESKY CG IT – 1 RHS BANDED CG IT – 1 RHS

POWER MAX 200Watts POWER MAX 179 Watts 



Fast Approximate Math Expressions 
for Big Data, Deep Learning, and more ...
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Impact on Big Data

Main players are investing billions of Dollars in Data Analytics and Deep Learning:
 Knowledge extraction
 Image recognition (face, objects, captions generation, ...)
 Speech recognition (language identification, automatic translation, ...)

 Sentiment analysis (emotions, views, impact of thoughts, …)

 and many more (potentially unlimited) …

 IBM TrueNorth 2014 is the first neuromorphic chip, specifically made to
simulate complex neural networks (NN), with ~268 millions programmable 
synapses

 Activation functions between synapse are triggered by functions as:
exp(), log(), pow(), tanh()

 Accuracy control is a desirable feature while training NN

Neural Networks

A list of benchmark records summarized in a talk 
of J. Schmidhuber at ETHZ in 2014
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Drawbacks of state of the art practices

 Power series/Taylor expansions: 

PROS: make use of arithmetics (can use SIMD unit)
PROS: flexible accuracy
CONS: convergence is very slow (unusable for high accuracy)
CONS: even using Horner's rule it requires too many floating-point multiply-add

 Look-up tables: 

PROS: faster than Power series/Taylor expansions
CONS: do not make use of arithmetics (only partial SIMD use)

 IEEE-745 manipulations, by N. N. Schraudolph in 1998:

PROS: extremely fast
CONS: very inaccurate (max 1 or 2 digits accurate) 
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Idea: combine IEEE-745 manipulation with polynomial interpolation

Main resulting advantages:
 Huge reduction in the time-to-solution (up to 96 % on IBM BG/Q, Power7 and Power8)
 Huge reduction in the energy-to-solution (up to 93 % on IBM BG/Q, Power7 and Power8)
 Low-to-High accuracy flexibility (the user can control the degree of the polynomial)
 Architecture flexibility (specific SIMD implementation possible on any modern architecture)

Further advantages:
 Scalar versions (no SIMD) are still much faster and energy efficient than classical strategies
 OpenMP (multithread) implementations possible and efficient for big vectors

Main ingredients:
 IEEE-745 manipulation is very fast
 Polynomial interpolation is suitable for 

100% SIMD unit use (multiply-add 
instructions)
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Performance analysis

exp(x) speedup on BG/Q

exp(x) speedup on POWER7



Stochastic Algorithms for 
Large Scale Graph Analytics
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Graph analytics paradigm shift: trading accuracy for complexity

 Big data regime demands analytics for large graphs in tens of millions

 Graph with 1 Million nodes requires minutes on fastest machine on the planet

 We believe that accuracy has to be traded for algorithmic complexity and 

scalability, because hardware will not beat complexity

 O(cN) with c << N will be the only way to tackle big data problems

European Street Network:
51 Million nodes, 108 Million edges
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Subgraph centrality: quantifying importance of nodes in a graph

Subgraph centrality measures the participation of each node in all subgraphs in a network [1]

 In a star graph the center participates in all 8 subgraphs of size 2 (a line)

 Each other node participate in all 8 subgraphs of size 4, where the center participates in 64 subgraphs of size 4 

 This can be computed by counting the weighted number of closed walks starting and ending at the same node

 Intuition: A + A2 + A3 + A4 + … + An accumulates all walks with length 1, 2, 3, 4, …, n

 This can be expressed as the diagonal entires of the exponential of the (adjacency) matrix

 
where k! is a weighting term to prevent divergence, penalizing long walks

Star graph Subgraphs of size 2 Subgraphs of size 4

[1] Estrada, Subgraph centrality in 

complex networks, Phys. Rev. E, 2005
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Computing the exponential of the adjacency matrix

There are several ways to compute eA with high computational and storage costs

 Polynomial approximation, e.g., Padé, or Taylor series

 Eigenvalue decomposition

Let us consider the decomposition

where V is orthogonal and D diagonal matrices. With this the exponential can be computed as

But: Cubic cost of computing: O(N3)

For moderate graph with 107 nodes → 1021 operations: takes days on state of the art clusters

We do not need all entries of eA, a stochastic approach approximating individual entries might help..
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Approximate exponential of the adjacency matrix
 Compute A = VTDV iteratively using Krylov subspace techniques

 After m << N iterations of Lanczos (for symmetric adjacency matrices) we can compute 

where V
m
 (n x m) are orthonormal basis vectors, and D

m
 (m x m) is tridiagonal

 Every iteration dominated by one matrix vector product: O(mN) cost

 Lanczos might loose orthogonality. Including re-orthogonalization we have: O(m2N) cost

 The exponential of D
m
 can be computed, e.g., using the eigendecomposition

where the diagonal matrix (exp(Λ))
ii
 = exp(λ

i
)

 Since m << N the cost of computing this eigendecomposition O(m3) is acceptable

 

Missing ingredient: we need only the diagonal of the exponential, possibly in a matrix-free form fashion!
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Matrix-free stochastic diagonal estimator
 In 1989 Hutchinson [1] described an unbiased stochastic trace estimator

where v
k
 are special “probe vectors” chosen to minimize variance: v

k,i
 element of {-1,1} with equal probability ½

 The idea can be generalized for estimating the diagonal of a matrix: use of s (<< N) probe vectors v
k
 to estimate 

the diagonal D of the matrix function F(A)

where we use element wise multiplication and division (Hadamard).

 F(A) v
k
 is computing (or approximating) a matrix free matrix vector multiplication

 The method requires only matrix vector products: total cost is O(sN) for a matrix with N elements, but s << N

 Why it works? On average the a
ij
 terms will converge to zero provided that the probe vectors v

k
 have uniform  

signs

[1] M.F. Hutchinson, A Stochastic Estimator of the Trace of the 
Influence Matrix for Laplacian Smoothing Splines, Comm. in Stat.-Sim. 
and Comp., vol. 18, pp. 1059-1076, 1989.
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Approximate exponential of adjacency matrix: full picture

Perform m iterations of Lanczos (with re-orthogonalization) and compute: Cost O(m2 nnz(A))

Define the matrix function Cost O(m3)

 

and plug into diagonal estimator: Cost s of the above Lanczos applications

Total cost: O(s m2 nnz(A)+m3) = O(s m2 d N) → Near linear cost

 d is the average degree 

 s the number of probe vectors v
k
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Strong scalability on BG/Q (up to 2 racks – early version of the code)

512 1024 2048 4096 8192 16384 32768
1

10

100

1

2.11

4.13

6.82
9.42 11.25 12.74

 We consider the European street network, ~51 million of nodes

 With conventional techniques, more than 1 ExaFLOP would be necessary to analyze this data

 On 2 BG/Q racks we compute the subgraph centrality in less than 30 seconds, with a stopping criteria of 1e−3
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