

EACH: An Energy-Efficient High-Level Synthesis Framework for Approximate Computing

Cong Hao, Takeshi Yoshimura

WASEDA University Graduate School of Information, Production and Systems

Introduction

- What is **High Level Synthesis**?
- Why we need High-Level Synthesis for Approximate Computing?
- Problem Formulation
- EACH: A High-Level Synthesis Framework for Approximate Computing
 - Functional Unit Allocation
 - Operation Scheduling

Experimental Results & Conclusion

What is High Level Synthesis (HLS)?

What is High Level Synthesis (HLS)?

 An automated design process from an algorithmic description to a hardware that implements the algorithm

Algorithmic (Behavior) Description

Register-Transfer-Level Hardware Implementation

Scheduling and Binding

- Two major steps in High-Level Synthesis

Binding

Introduction

- What is **High Level Synthesis**?
- Why we need High-Level Synthesis for Approximate Computing?
- Problem Formulation
- EACH: A High-Level Synthesis Framework for Approximate Computing
 - Functional Unit Allocation
 - Operation Scheduling

Experimental Results & Conclusion

HLS for Approximate Computing?

Too complex for manual approximate circuit design

- Large circuit scale
- Manual control of the design parameters and specifications is difficult
- There is not still a well-established methodology for automated construction of approximate systems and circuits
- Mechanisms to pass application intent to physical implementation flow need to be developed *

*Swann, Gavin, Martha Prevezer, and David Stout. *The dynamics of industrial clustering: International comparisons in computing and biotechnology*. Oxford University Press, 1998.

Introduction

- Problem Formulation
 - Inputs and Outputs
 - Error Control the constraints
 - Energy Consumption the objective
- EACH: A High-Level Synthesis Framework for Approximate Computing
- Experimental Results & Conclusion

Problem Formulation - Inputs and Outputs

Inputs

- Data Flow Graph (DFG)
- Different implementations of functional units (FU) with various design specifications (power, accuracy, area, etc.)

Outputs

A **scheduled DFG** where each operation is specified with an **accurate or approximate FU** implementation

					Pov	ver		Error							
T T T			Area	Delay	Power(mW)									
$(\oplus \oplus)$			(μm^2)	(nm)	Dynamic	Leakage	Prob.	Mean	Max	Var.					
$\left \int_{v} \right \int_{v}$		Precise	41	10	28	18	-	-	-	-					
		Appr. 1	22	8	20	14	0.15	3.5%	57.14%	42					
* *	ADD	Appr. 2	24	8	16	14	0.2	4.5%	57.14%	6833					
		Appr. 3	14	6	10	10	0.23	6.0%	57.14%	10905					
L I	MIII	Precise	710	22	122	83	-	-	-	-					
DFG	WIUL	Appr.	468	14	68	82	0.81	3.32%	22.22%	4.3×10^{5}					

FU implementations

A scheduled DFG with determined FU implementations

WASEDA University Graduate School of Information, Production and Systems

Problem Formulation – Constraints

02

 vs_{op_1,o_2}^1

 vs_{op_1,o_2}^k

 vs_{op_2,o_2}^1

 vs_{op_2,o_2}^k

 $v_B(o_2)$

- Latency Constraint
 - General constraint for HLS
- Output Error Constraints
 - Special for Approximate Computing

01

 vs_{op_1,o_1}^1

 vs_{op_1,o_1}^k

 vs_{op_2,o_1}^1

 vs_{op_2,o_1}^k

 $v_B(o_1)$

Error Propagation

 $\overline{F_{\tau_1}^{\varphi_1}}$

 F^{φ_k}

 τ_1

 F^{φ_1}

 $F_{\tau_2}^{\varphi_k}$

 op_1

type τ_1

 op_2

type τ_2

system error constraint

Problem Formulation – Objective

Minimize the energy consumption

- Dynamic power **P**_{dy}
- Leakage power P_{lk} dominated by resource usage

Brief Summary

Traditional HLS vs. <u>HLS for Approximate Computing</u>

Brief Summary

Traditional HLS vs. <u>HLS for Approximate Computing</u>

- Introduction
- Problem Formulation
- EACH: An Energy-Efficient Approximate Computing High-Level Synthesis Framework
 - Initial Solution: Functional Unit Allocation
 - **Optimization**: Operation Scheduling
- Experimental Results & Conclusion

- Introduction
- Problem Formulation
- EACH: An Energy-Efficient Approximate Computing High-Level Synthesis Framework
 - Initial Solution: Functional Unit Allocation
 - **Optimization**: Operation Scheduling
- Experimental Results & Conclusion

Overall Flow of EACH

- Introduction
- Problem Formulation
- EACH: An Energy-Efficient Approximate Computing High-Level Synthesis Framework
 - Initial Solution: Functional Unit Allocation
 - **Optimization**: Operation Scheduling
- Experimental Results & Conclusion

Functional Unit (FU) Allocation

- Objective Use approximate FUs as many as possible under error constraints to minimize energy
- Previous Work and Motivating Example
 - The Multiple-choice Multiple-dimension Knapsack (MMKP)
 - Resource sharing is ignored increased leakage energy

Functional Unit (FU) Allocation

- Objective Use approximate FUs as many as possible under error constraints to minimize energy
- Previous Work and Motivating Example
 - The Multiple-choice Multiple-dimension Knapsack (MMKP)
 - Resource sharing is ignored increased leakage energy
 - Not to increase the number of FUs binding aware

Functional Unit (FU) Allocation

Production and Systems

 Proposal – to guarantee that the FU usage does not increase and the energy strictly reduces

- Introduction
- Problem Formulation
- EACH: An Energy-Efficient Approximate Computing High-Level Synthesis Framework
 - Initial Solution: Functional Unit Allocation
 - Optimization: Operation Scheduling
- Experimental Results & Conclusion

Operation Scheduling

- How to perform operation scheduling
 - To enable as many approximate FUs are used as possible
 - To reduce total FU usage (precise, approximate)

Operation Scheduling

- Error ratio density and resource density
 - **Error ratio**: energy reduction per error of an operation
 - Error radio density: the density of operations with large error ratio
 - **Resource density**: the density of operations with **small** error ratio
- Proposal To uniformly distribute the variance of error ratio density and resource density

- Introduction
- Problem Formulation
- EACH: An <u>Energy-Efficient Approximate Computing High-</u> Level Synthesis Framework
 - Initial Solution: Functional Unit Allocation
 - Optimization: Operation Scheduling
- Experimental Results & Conclusion

WASEDA University Graduate School of Information, Production and Systems

Experimental Results

- Linux RedHat with 2.8GHz CPU and 8GB memory, C language
- Error constraints are set to allow the approximate outputs be 3% to 10% different from the accurate values
 - A commensurate error tolerance range for image processing applications

	ar	ar2	ad2	arf	ellip	ewf	fft	fir	mpeg	mvd	rand0	rand1	rand2
# of Operations	28	28	46	28	34	34	129	44	53	32	91	157	631
Error Variance*	30	40	100	20	14	70	120	10	100	5	9	12	15
Mean Error	8.3%	6.7%	9.8%	5.9%	7.5%	6.8%	7.2%	7.3%	9.6%	7.1%	4.1%	3.8%	3.3%

- Evaluation of FU allocation initial solution
 - Achieved **11% total energy reduction** compared to precise circuits on average
- Evaluation of scheduling and FU adjustment optimization
 - Achieved another 7% energy reduction from initial solutions

		Pre	recise KILS [14]											EACH(initial)											EACH												
test	F	U	Energy	FU						Energy(W) Ti				Time	FU				Energy(W)						FU	J			Energy					Time			
bench	N^+	N^*	Total(W)	N_0^+	N_{1}^{+}	N_{2}^{+}	N_3	$+N_{0}^{*}$	N_1^*	Ely	Edy	Total	Cmp	(ms)	N_0^+	N_{1}^{+}	N_{2}^{+}	N_3^+	N_0^*	N_1^*	Ely	Edy	Total	Cmp	N_0^+	N_{1}^{+}	N_2^+	N_{3}^{+}	N_0^*	N_1^*	Ely	Edy	Total	Cmp	(ms)	Cmp	
ar	2	5	7.25	2	0	0	2	0	5	5.13	1.26	6.34	0.85	2	1	0	1	0	0	5	4.86	1.35	6.21	0.86	1	0	1	0	0	5	4.86	1.35	6.21	0.86	1	0.5	
ar2	2	4	6.34	0	1	0	2	0	4	3.98	1.22	5.20	0.82	2	0	0	1	1	0	4	3.87	1.24	5.12	0.81	0	0	1	1	0	4	3.87	1.24	5.12	0.81	2	1.0	
ad2	2	4	21.88	2	0	0	1	3	3	24.89	4.13	29.01	1.33	26	2	0	0	0	3	1	16.88	4.36	21.24	0.97	2	0	0	0	3	1	16.88	4.36	21.24	0.97	37	1.42	
arf	2	4	7.44	2	0	0	2	0	4	5.37	1.35	6.73	0.90	2	2	0	0	0	0	4	5.04	1.39	6.43	0.86	1	1	0	0	0	4	4.00	1.42	5.43	0.73	2	1.0	
ellip	2	4	12.23	2	0	0	2	0	4	13.20	2.23	15.43	1.26	3	2	0	0	0	2	2	8.78	2.48	11.26	0.92	2	0	0	0	2	2	8.78	2.48	11.26	0.92	10	3.3	
ewf	3	2	5.66	1	1	1	3	0	2	3.82	0.84	4.66	0.82	8	1	1	0	1	0	2	3.78	0.96	4.74	0.84	1	0	1	1	0	2	3.64	0.93	4.57	0.81	4	0.5	
fft	4	4	16.75	4	1	0	4	1	4	13.96	3.34	17.30	1.03	59	2	1	0	1	0	4	10.09	4.06	14.15	0.84	2	0	0	2	0	4	9.98	3.80	13.78	0.82	23	0.4	
fir	3	3	10.67	3	0	0	0	2	2	7.17	2.75	9.92	0.93	3	2	1	0	0	2	1	7.15	2.88	10.04	0.94	1	0	0	2	1	2	5.36	2.93	6.49	0.61	4	1.3	
mpeg	3	3	13.14	3	0	0	2	3	0	11.63	2.04	13.67	1.04	295	3	0	0	0	2	1	10.87	2.18	13.05	0.99	3	0	0	0	2	1	10.87	2.18	13.05	0.99	288	0.9	
mvd	3	3	6.15	2	1	0	1	1	3	4.29	1.54	5.83	0.95	3	2	1	0	0	1	2	3.86	1.64	5.50	0.89	1	1	1	0	1	2	3.40	1.67	5.07	0.82	2	0.7	
rand0	7	6	14.13	5	1	0	7	1	6	11.98	2.53	14.51	1.03	102	4	0	2	1	1	5	9.65	2.88	12.53	0.89	2	0	1	3	1	5	8.21	2.67	10.88	0.77	59	0.6	
rand1	12	6	19.13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9	1	1	1	2	4	12.47	4.97	17.44	0.91	7	1	0	4	1	5	10.64	4.42	15.05	0.79	38	NA	
rand2	32	17	84.88	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19	1	1	11	4	13	53.24	17.46	70.71	0.83	14	5	6	7	2	15	41.62	20.66	62.28	0.73	185	NA	
AVR													0.98											0.89										0.82		0.89	

*KILS: Li, Chaofan, et al. Joint precision optimization and high level synthesis for approximate computing. DAC, 2015

Conclusion

- A Framework of High-Level Synthesis for Approximate Computing
- Two sub-problems:
 - FU allocation initial solution
 - Operation Scheduling and FU allocation adjustment optimization
- Total 18% energy reduction is achieved, while previous work KILS achieves 2% in average

