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What is High Level Synthesis (HLS)?
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What is High Level Synthesis (HLS)?

 An automated design process from an algorithmic description 
to a hardware that implements the algorithm
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Scheduling and Binding

 Two major steps in High-Level Synthesis

X = A + B;
E = X * D;
F = (B + C) * X;
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HLS for Approximate Computing? 

 Too complex for manual approximate circuit design

• Large circuit scale
• Manual control of the design parameters and specifications is 

difficult

 There is not still a well-established methodology for 
automated construction of approximate systems and 
circuits

 Mechanisms to pass application intent to physical 
implementation flow need to be developed *

*Swann, Gavin, Martha Prevezer, and David Stout. The dynamics of industrial clustering: 
International comparisons in computing and biotechnology. Oxford University Press, 1998.
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Problem Formulation – Inputs and Outputs 

 Inputs

• Data Flow Graph (DFG)

• Different implementations of functional units (FU) with 
various design specifications (power, accuracy, area, etc.)

 Outputs

A scheduled DFG where each operation is specified with an 
accurate or approximate FU implementation
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Problem Formulation – Constraints

 Latency Constraint

• General constraint for HLS

 Output Error Constraints

• Special for Approximate 
Computing

• Error Propagation
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Problem Formulation – Objective

 Minimize the energy consumption

• Dynamic power 𝑷𝒅𝒚

• Leakage power 𝑷𝒍𝒌 – dominated by resource usage
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Brief Summary

 Traditional HLS vs. HLS for Approximate Computing
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Brief Summary

 Traditional HLS vs. HLS for Approximate Computing
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Overall Flow of EACH
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Functional Unit (FU) Allocation 

 Objective – Use approximate FUs as many as possible under 
error constraints to minimize energy

 Previous Work and Motivating Example

• The Multiple-choice Multiple-dimension Knapsack (MMKP)

• Resource sharing is ignored – increased leakage energy
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Functional Unit (FU) Allocation 

 Objective – Use approximate FUs as many as possible under 
error constraints to minimize energy

 Previous Work and Motivating Example

• The Multiple-choice Multiple-dimension Knapsack (MMKP)

• Resource sharing is ignored – increased leakage energy

• Not to increase the number of FUs – binding aware
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Functional Unit (FU) Allocation 

 Proposal – to guarantee that the FU usage does not 
increase and the energy strictly reduces
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Operation Scheduling

 How to perform operation scheduling

• To enable as many approximate FUs are used as possible

• To reduce total FU usage (precise, approximate)
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Operation Scheduling

 Error ratio density and 
resource density

• Error ratio: energy reduction 
per error of an operation

• Error radio density: the density 
of operations with large error ratio

• Resource density: the density of 
operations with small error ratio

 Proposal – To uniformly 
distribute the variance of error 
ratio density and resource 
density
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Experimental Results

 Linux RedHat with 2.8GHz CPU and 8GB memory, C language

 Error constraints are set to allow the approximate outputs 
be 3% to 10% different from the accurate values

• A commensurate error tolerance range for image processing 
applications



Experimental Results

 Evaluation of FU allocation – initial solution

• Achieved 11% total energy reduction compared to precise 
circuits on average

 Evaluation of scheduling and FU adjustment – optimization

• Achieved another 7% energy reduction from initial solutions

*KILS: Li, Chaofan, et al. Joint precision optimization and high level synthesis for approximate computing. DAC, 2015



Conclusion

 A Framework of High-Level Synthesis for Approximate 
Computing

 Two sub-problems:

• FU allocation – initial solution
• Operation Scheduling and FU allocation adjustment –

optimization

 Total 18% energy reduction is achieved, while previous work KILS 
achieves 2% in average


