
EACH: An Energy-Efficient

High-Level Synthesis Framework for

Approximate Computing

Cong Hao, Takeshi Yoshimura

Outline

 Introduction

• What is High Level Synthesis?

• Why we need High-Level Synthesis for Approximate
Computing?

 Problem Formulation

 EACH: A High-Level Synthesis Framework for Approximate
Computing

• Functional Unit Allocation

• Operation Scheduling

 Experimental Results & Conclusion

What is High Level Synthesis (HLS)?

Gate
(verilog/VHDL)

RTL
(verilog/VHDL)

Behavioral
Description
(C/C++ etc)

System Specification
(Natural Language)

X

A

B

C

D

Logic
Synthesis

High-Level
Synthesis

Process()
wait until clk

if and then
x:=a+b;
y:=a*b;

else
x:=a-b;
y:=y+1;

endif;

VLSI
Design Flow

Physical
Synthesis

Mask
(GDSII)

What is High Level Synthesis (HLS)?

 An automated design process from an algorithmic description
to a hardware that implements the algorithm

Process()
wait until clk

if and then
x:=a+b;
y:=a*b;

else
x:=a-b;
y:=y+1;

endif;

S0

S1

S2

Control Unit

Datapath

S0

S1

S2
Control
Signals

AB

C

D

＋ ＊

E

Input

Output

FSM

F

Algorithmic (Behavior)
Description

Register-Transfer-Level Hardware
Implementation

Scheduling and Binding

 Two major steps in High-Level Synthesis

X = A + B;
E = X * D;
F = (B + C) * X;

Data Flow Graph
(DFG)

＋

＊

＋

＊

A B CD

X Y

FE

Behavior
Description

Scheduling

＋

＊ ＋

＊

A B CD

X

Y

Step-1

E

FE

Adder x1
Multiplier x1

Step-2

Step-3

A B C D X Y

＋ ＊

E F

Register x 8
Multiplexer x 4

Binding

Outline

 Introduction

• What is High Level Synthesis?

• Why we need High-Level Synthesis for Approximate
Computing?

 Problem Formulation

 EACH: A High-Level Synthesis Framework for Approximate
Computing

• Functional Unit Allocation

• Operation Scheduling

 Experimental Results & Conclusion

HLS for Approximate Computing?

 Too complex for manual approximate circuit design

• Large circuit scale
• Manual control of the design parameters and specifications is

difficult

 There is not still a well-established methodology for
automated construction of approximate systems and
circuits

 Mechanisms to pass application intent to physical
implementation flow need to be developed *

*Swann, Gavin, Martha Prevezer, and David Stout. The dynamics of industrial clustering:
International comparisons in computing and biotechnology. Oxford University Press, 1998.

Outline

 Introduction

 Problem Formulation

• Inputs and Outputs

• Error Control – the constraints

• Energy Consumption – the objective

 EACH: A High-Level Synthesis Framework for Approximate
Computing

 Experimental Results & Conclusion

Problem Formulation – Inputs and Outputs

 Inputs

• Data Flow Graph (DFG)

• Different implementations of functional units (FU) with
various design specifications (power, accuracy, area, etc.)

 Outputs

A scheduled DFG where each operation is specified with an
accurate or approximate FU implementation

＋

＊

＋

＊

A B CD

X Y

FE

＋

＊ ＋

＊

A B CD

X

Y

Step-1

E

FE

Step-2

Step-3

DFG

FU implementations
A scheduled DFG

with determined FU
implementations

Power Error

Problem Formulation – Constraints

 Latency Constraint

• General constraint for HLS

 Output Error Constraints

• Special for Approximate
Computing

• Error Propagation

＋

＊ ＋

＊

A B CD

Step-1

FE

Step-2

Step-3

Latency T

𝝐𝟏

𝒌𝟏 ⋅ 𝝐𝟏 + 𝝐𝟐 𝒌𝟐 ⋅ 𝝐𝟏 + 𝝐𝟑

Output errors
need to be
bounded

∑𝒌𝒊𝝐𝒊 ∑𝒌𝒋𝝐𝒋

Problem Formulation – Objective

 Minimize the energy consumption

• Dynamic power 𝑷𝒅𝒚

• Leakage power 𝑷𝒍𝒌 – dominated by resource usage

＋

＊ ＋

＊

A B CD

Step-1

FE

Step-2

Step-3

𝑷𝒅𝒚 × 𝟏 𝑷𝒍𝒌 × 𝟑𝑷𝒍𝒌 × 𝟑

𝑷𝒅𝒚 × 𝟏 + 𝑷𝒍𝒌 × 𝟑
An ADD FU

Energy consumption for
the ADD FU:

Dynamic
Energy

Leakage
Energy

Brief Summary

 Traditional HLS vs. HLS for Approximate Computing

Traditional
HLS

HLS for
Approximate

Computing

DFG
Latency

Scheduled DFG

DFG
Latency

Error Constraints

Scheduled DFG Approximate
FU allocation

Approximate FUs

＋

＊ ＋

＊

A B CD

Step-1

FE

Step-2

Step-3

＋

＊ ＋

＊

A B CD

Step-1

FE

Step-2

Step-3

Brief Summary

 Traditional HLS vs. HLS for Approximate Computing

Traditional
HLS

HLS for
Approximate

Computing

DFG
Latency

Scheduled DFG

DFG
Latency

Error Constraints

Scheduled DFG Approximate
FU allocation

Approximate FUs

＋

＊ ＋

＊

A B CD

Step-1

FE

Step-2

Step-3

＋

＊ ＋

＊

A B CD

Step-1

FE

Step-2

Step-3

The Dimension of the HLS solution space
grows from n to n+1

Outline

 Introduction

 Problem Formulation

 EACH: An Energy-Efficient Approximate Computing High-
Level Synthesis Framework

• Initial Solution: Functional Unit Allocation

• Optimization: Operation Scheduling

 Experimental Results & Conclusion

Outline

 Introduction

 Problem Formulation

 EACH: An Energy-Efficient Approximate Computing High-
Level Synthesis Framework

• Initial Solution: Functional Unit Allocation

• Optimization: Operation Scheduling

 Experimental Results & Conclusion

Overall Flow of EACH

RTL VHDL

RTL generation

Error analyze

Resource usage aware FU allocation

Mobility allocation update

Operation Scheduling &

FU allocation adjustment

Interconnect-aware

FU and register binding

Error constraint table, initial operation scheduling

DFG with allocated FU

DFG, approximate FUs, error constraint

Scheduled and bounded DFG with FUs

Initial mobility allocation (in Section V)

& initial scheduling

1. Pre-processing

2. FU Allocation :

Initial Solution

3. Scheduling:

optimization

4. Binding

Scheduled DFG with allocated FUs

Outline

 Introduction

 Problem Formulation

 EACH: An Energy-Efficient Approximate Computing High-
Level Synthesis Framework

• Initial Solution: Functional Unit Allocation

• Optimization: Operation Scheduling

 Experimental Results & Conclusion

Functional Unit (FU) Allocation

 Objective – Use approximate FUs as many as possible under
error constraints to minimize energy

 Previous Work and Motivating Example

• The Multiple-choice Multiple-dimension Knapsack (MMKP)

• Resource sharing is ignored – increased leakage energy

1 2

3 4

5 6

O1 O2

𝐹+
1

𝐹+
2

𝐹+
3 𝐹+

3

𝑃𝑟.

𝑃𝑟.

Resource : 5 FUs
𝑃𝑟𝑒𝑐𝑖𝑠𝑒 × 1

𝐹+
1 × 1

𝐹+
2 × 1

𝐹+
3 × 2

Energy:

∑𝐿𝑒𝑎𝑘𝑎𝑔𝑒 +
∑𝐷𝑦𝑛𝑎𝑚𝑖𝑐

= 𝟑𝟏𝟎

Resource : 2 FUs
𝑃𝑟𝑒𝑐𝑖𝑠𝑒 × 2

Energy:

∑𝐿𝑒𝑎𝑘𝑎𝑔𝑒
+

∑𝐷𝑦𝑛𝑎𝑚𝑖𝑐

= 𝟐𝟕𝟔

𝑃𝑟.1 2

3 4

5 6

O1
O2

𝑃𝑟.

Solution with all precise FUs Knapsack solution

Functional Unit (FU) Allocation

 Objective – Use approximate FUs as many as possible under
error constraints to minimize energy

 Previous Work and Motivating Example

• The Multiple-choice Multiple-dimension Knapsack (MMKP)

• Resource sharing is ignored – increased leakage energy

• Not to increase the number of FUs – binding aware

Resource : 3 FUs
𝑃𝑟𝑒𝑐𝑖𝑠𝑒 × 1

𝐹+
1 × 1

𝐹+
2 × 1

𝐹+
3 × 2

Energy:

∑𝐿𝑒𝑎𝑘𝑎𝑔𝑒+
∑𝐷𝑦𝑛𝑎𝑚𝑖𝑐

= 𝟐𝟔𝟔

1 2

3 4

5 6

O1
O2

𝐹+
1

𝐹+
2

𝐹+
1 𝐹+

2

𝑃𝑟.

𝑃𝑟.

1 2

3 4

5 6

O1 O2

𝐹+
1

𝐹+
2

𝐹+
3 𝐹+

3

𝑃𝑟.

𝑃𝑟.

Resource : 5 FUs
𝑃𝑟𝑒𝑐𝑖𝑠𝑒 × 1

𝐹+
1 × 1

𝐹+
2 × 1

𝐹+
3 × 2

Energy:

∑𝐿𝑒𝑎𝑘𝑎𝑔𝑒 +
∑𝐷𝑦𝑛𝑎𝑚𝑖𝑐

= 𝟑𝟏𝟎
Knapsack solution Binding aware solution with lower energy

Functional Unit (FU) Allocation

 Proposal – to guarantee that the FU usage does not
increase and the energy strictly reduces

1 2

𝑷𝒓𝒆𝒄𝒊𝒔𝒆 𝑭𝝉
𝝋𝟎 × 𝟒

3 4 5

7 8 9

10 11 12 13

6

14 15

𝑨𝒑𝒑𝒓. 𝑭𝝉
𝝋𝒌 × 𝟎

Critical
Control
steps

1 2

𝑷𝒓𝒆𝒄𝒊𝒔𝒆 𝑭𝝉
𝝋𝟎 × 𝟑

3 4 5

7 8 9

10 1112 13

6

14 15

𝑨𝒑𝒑𝒓. 𝑭𝝉
𝝋𝒌 × 𝟏

1 2

𝑷𝒓𝒆𝒄𝒊𝒔𝒆 𝑭𝝉
𝝋𝟎 × 𝟑

3 4 5

7 89

10 1112 13

6

14 15

𝑨𝒑𝒑𝒓. 𝑭𝝉
𝝋𝒌 × 𝟏

Find critical control
steps c2 and c4

Strong Replacement Weak Replacement1. Collect critical
control steps

The control steps that
have the largest number
of precise FUs

2. Strong Replacement

In each critical control
step, replace one precise
FU using a new
approximate FU

3. Weak Replacement

Reuse the newly allocated
FU in 2 to reduce dynamic
energy

Outline

 Introduction

 Problem Formulation

 EACH: An Energy-Efficient Approximate Computing High-
Level Synthesis Framework

• Initial Solution: Functional Unit Allocation

• Optimization: Operation Scheduling

 Experimental Results & Conclusion

Operation Scheduling

 How to perform operation scheduling

• To enable as many approximate FUs are used as possible

• To reduce total FU usage (precise, approximate)

𝑨𝒑𝒑𝒓. 𝑨𝑫𝑫 × 𝟏 𝟑, 𝟒
𝑷𝒓𝒆𝒔𝒊𝒄𝒆. 𝑨𝑫𝑫 × 𝟐 𝟏), (𝟐

𝑨𝒑𝒑𝒓. 𝑨𝑫𝑫 × 𝟏 (𝟑, 𝟒)
𝑷𝒓𝒆𝒔𝒊𝒄𝒆. 𝑨𝑫𝑫 × 𝟏 𝟏, 𝟐

3 4

1

2

𝑨𝒑𝒑𝒓. 𝑨𝑫𝑫 × 𝟏 (𝟑)
𝑷𝒓𝒆𝒔𝒊𝒄𝒆. 𝑨𝑫𝑫 × 𝟏 𝟏, 𝟐, 𝟒

3

4

1 2

3

4

1

2

Operation Scheduling

 Error ratio density and
resource density

• Error ratio: energy reduction
per error of an operation

• Error radio density: the density
of operations with large error ratio

• Resource density: the density of
operations with small error ratio

 Proposal – To uniformly
distribute the variance of error
ratio density and resource
density

3

4

1

2

𝑫𝒓𝒂
𝝉

0

5.5

12.

5

𝜗0 ⋅ 1.5

0

Error Ratio: 1

Error Ratio: 2

Error Ratio: 11

Error Ratio: 7

𝜗0 ⋅ 0.5

𝑫𝒓𝒔
𝝉

𝐴𝑝𝑝𝑟. 𝐴𝐷𝐷 × 1 (3, 4)
𝑃𝑟𝑒𝑠𝑖𝑐𝑒. 𝐴𝐷𝐷 × 1 1, 2

Outline

 Introduction

 Problem Formulation

 EACH: An Energy-Efficient Approximate Computing High-
Level Synthesis Framework

• Initial Solution: Functional Unit Allocation

• Optimization: Operation Scheduling

 Experimental Results & Conclusion

Experimental Results

 Linux RedHat with 2.8GHz CPU and 8GB memory, C language

 Error constraints are set to allow the approximate outputs
be 3% to 10% different from the accurate values

• A commensurate error tolerance range for image processing
applications

Experimental Results

 Evaluation of FU allocation – initial solution

• Achieved 11% total energy reduction compared to precise
circuits on average

 Evaluation of scheduling and FU adjustment – optimization

• Achieved another 7% energy reduction from initial solutions

*KILS: Li, Chaofan, et al. Joint precision optimization and high level synthesis for approximate computing. DAC, 2015

Conclusion

 A Framework of High-Level Synthesis for Approximate
Computing

 Two sub-problems:

• FU allocation – initial solution
• Operation Scheduling and FU allocation adjustment –

optimization

 Total 18% energy reduction is achieved, while previous work KILS
achieves 2% in average

