Improving Error-Resilience of Emerging Multi-Value Technologies

Magnus Själander, Gustaf Borgström, Stefanos Kaxiras

Uppsala University

Jan 20, 2016

UPPSALA UNIVERSITET

Moore's Law Struggling with CMOS

¹ National Research Council, "The Future of Computing Performance: Game Over or Next Level?", 2011.

Moore's Law

- ¹ The economist, "A golden rule of microchips appears to be coming to an end", Nov. 18, 2013.
- ² Vivek Singh, Intel, "Moore's Law at 50: No End in Sight", DAC 2015 keynote.

Emerging Technologies to the Rescue?

- R. Lavieville et al., "350K Operating Silicon Nanowire Single Electron/Hole Transistors Scaled Down to 3.4nm Diameter and 10nm Gate Length" EUROSOI-ULIS, Jan., 2015.
- ² X. Jehl et al., "The coupled atom transistor" Journal of Physics: Condensed Matter, 2015.
- ³ M. Seo et al., "Multi-valued logic gates based on ballistic transport in quantum point contacts" Scientific Reports, 4, 2014.

Quantum Dot SET Half Adder

¹ M.V. Klymenko and F. Remacle, University of Liège.

Dual-Mode Gates

OR						AND							
	BA	0	1	2	3	BA	0	1	2	3		BA	0
	0	0	1	2	3	0	0	0	0	0		0	0
	1	1	1	3	3	1	0	1	0	1		1	1
	2	2	3	2	3	2	0	0	2	2		2	2
	3	3	3	3	3	3	0	1	2	3		3	3

MAX

110.01									
A B	0	1	2	3					
0	0	1	2	3					
1	1	1	2	3					
2	2	2	2	3					
3	3	3	3	3					

MIN									
A B	0	1	2	3					
0	0	0	0	0					
1	0	1	1	1					
2	0	1	2	2					
3	0	1	2	3					

INV А 0 3 1 2 2 1 3 0

XOR 1 2 3

1

3 0 1

2

2 3

0 3

2

1 0

Dual-Mode Adder?

		HA			FA (carry=1)					
BA	0	1	2	3		A B	0	1	2	3
0	0	1	2	3		0	1	2	З	0
1	1	2	З	0		1	2	3	0	1
2	2	3	0	1		2	3	0	1	2
3	3	0	1	2		3	0	1	2	3

Carry-Lookahead Adder

Dual-Mode Adder

		HA			FA (carry=1)					
A B	0	1	2	3		A B	0	1	2	3
0	0	0	0	0		0	0	0	0	1
1	0	0	0	1		1	0	0	1	1
2	0	0	1	1		2	0	1	1	1
3	0	1	1	1		3	1	1	1	1

Carry-Lookahead Adder

Dual-Mode Caches

• EnerJ

- Implemented our own Cache Model
- New Error Models
- Eight benchmarks
- Energy Estimation
 - Gate Equivalents
 - CACTI

Results — Energy

- 32% average energy reduction for the register file
- 36% average energy reduction for the L1 cache
- 18% average energy reduction for arithmetic

Benchmark	Original (%)	Approximate (%)	Improvement (%)
lu	5.11	2.67	48%
smm	7.00	4.36	38%
fft	15.91	0.004	100%
sor	2.13	1.08	49%
imagefill	17.26	11.62	33%
sobel	0.10	0.05	50%
jmeint	1.30	0.65	50%
raytrace	0.50	0.25	50%

Summary

• We live in interesting times

- CMOS scaling is reaching its end
- Emerging devices have new characteristics
- Continued scaling leads to unreliable devices
 - Approximate computing
 - Trading power and performance against precision
- Multi-value devices
 - Dual-mode architecture
 - Binary format for reliable operations
 - Quaternary format for efficient operations

Thank You for Listening

