

# Under-limits Voltage Scaling: The benefit of Approximate Computing

#### Alberto Bosio (LIRMM), Miroslav Valka (ST-TIMA) France bosio@lirmm.fr

# Outline

- Introduction
- Proposed Approach
- Experimental Results
- Conclusions

## Introduction



## State-of-the-Art

- Approximate Computing
  - Reduces the supplied  $V_{dd}$ 
    - Save energy



• Faults (timing errors) can appear

#### State-of-the-Art



5

#### State-of-the-Art



The application can "tolerate" errors

Z PARTIN DA USACHINALO 100

#### **Proposed Approach**



7

# **Characterization Phase**

- Run a dedicated stress program called Failing Test (FT)
  - As short as possible
  - Maximize the CPU activity
- Generate by using the approach of [VLSI-SoC'11]

#### **Characterization Phase**



### **Characterization Phase**



## Noise Sensor

- Noise induced because the V<sub>dd</sub> is too low w.r.t. the CPU activity
  - Power Supply Noise (PSN)
  - It can impacts he jitter of a given signal



#### **PSN** affects Jitter



| Power supplies | T <sub>IN</sub> /T <sub>PSN</sub> | μ value of<br>T <sub>IN</sub> on T <sub>out</sub><br>[ps] | σ [ps] |
|----------------|-----------------------------------|-----------------------------------------------------------|--------|
| VDD ideal      | 0.3                               | 300                                                       | 0      |
| Low Freq (LF)  | 0.3                               | 299                                                       | 7.14   |
| LF + High Freq | 0.3                               | 300                                                       | 11.27  |

# Selecting the Signal



# Selecting the Signal



- Case study:
  - CPU core : MSC-51 (mc8051)
  - memory SRAM (64k\*8bit)
  - @28nm FDSOI

| Vdd                       | <b>1</b> V |
|---------------------------|------------|
| <b>Vdd</b> <sub>cpu</sub> | <b>1</b> V |
| #PI                       | 66         |
| #PO                       | 96         |
| #gates                    | 8316       |
| # FFs                     | 578        |



- The Failing Test has been generated by using the tool and the methodology described in [VLSI-SoC'11]
- The execution time of the FT is less than 1 second

Characterization phase
It requires about 1 minute



## Conclusions

- Effective approach for adapting the  $V_{\rm dd}$  depending on the running application
- Characterization phase
  - Approximate computing -> reduces V<sub>dd</sub> until errors appear
- Sensitive to external conditions
- In average 25% of  $V_{dd}$  reduction



- A lot of things... It would be good if
  - We could automatically understand that the application starts to fail -> due to external conditions or aging effects
  - Re-run the characterization phase
  - Increase the operation life of the system