Towards Formal Relaxed Equivalence Checking in Approximate Computing Methodology

Lukáš Holík, Ondřej Lengál, Adam Rogalewicz Lukáš Sekanina, Zdeněk VAŠíčEK, Tomáš Vojnar

Faculty of Information Technology
Brno University of technology
vasicek@fit.vutbr.cz

UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

- Approximate computing
- Functional approximations
- Relaxed equivalence checking
- Towards relaxed equivalence checking
- The requirement of exact numerical or Boolean equivalence between the specification and implementation of a circuit is relaxed in order to achieve improvements in performance or energy efficiency [Venkatesan et al., 2011].
- The requirement of exactness can be relaxed because of:

1. limited perceptual capability of humans
2. a golden result is impossible (or difficult) to define
3. worst-case design would lead to large power consumption (process parameter variations are large in sub-45 nm technologies)

- The concept of approximate computing has been developed in different ways and at various levels of computing stack, for example
- Software-level approximations
- EnerJ: approximate data types in JAVA [Sampson el al., 2011]
- Neural network replaces general purpose code [Esmaeilzadeh el a., 2013]
- Axilog: language annotations [Yazdanbakhs, 2015]
- Specialized processors supporting approximate computing
- Improving Efficiency of Extensible Processors by Using Approximate Custom Instructions, [Kamal et al., 2014]
- Hardware-level approximations
- over-scaling based approximations
- functional approximations
- Principle: Approximations are introduced by over-clocking or voltage over-scaling (i.e. the circuits operate correctly under normal conditions).

- Limits: The over-scaling based approach works well when there exists few long paths in the target circuit.
- Goal: To implement a slightly different Boolean function that has faster or more power-efficient implementation.
- Two main methodologies were developed
- Ad hoc methods optimizing a particular component, e.g. multipliers [Kulkarni, 2011], adders [Gupta, 2013], median filters [Monajati, 2015]
- Design automation methods

SASIMI: Substitute-and-simplify [Venkataramani et al, 2013]
SALSA: Systematic logic synthesis using Quality Constraint Circuits [Venkataramani et al, 2012] ABACUS: AST-based approach [Nepal et al., 2014]

- Although approximate computing techniques have shown significant promise, moving them to the mainstream will require several issues to be addressed, foremost among which is the issue of modeling and analysis of accuracy. [Venkatesan, 2011]

Approach	Circuits	Accuracy measured using
ABACUS 2014	FIR filter, perceptron, block matcher	training data
ASLAN 2014	MPEG encoder	sequential quality constraint circuit
SASIMI 2013	Benchmarks, multipliers, adders, SAD	training data
SALSA 2012	Adders, multipliers, FIR, IIR, DCT	quality constraint circuit

- Several approximate designs have been proposed that compromise accuracy in different ways; unfortunately there is no simple and systematic analysis methodology to evaluate quality of candidate designs and compare them with conventional designs or with each other.

The evaluation of quality based on training data cannot

- guarantee that a given approximate implementation meets my accuracy requirements.
- ensure that there are no bugs in an approximate implementation.
- be applied when only a neglible error is acceptable.
- Traditional formal verification techniques (combinational and sequential equivalence checking) are designed to prove exact Boolean equivalence between specification and implementation and do not directly address the previous questions.
- There is a need for relaxed equivalence checking, an approach which is able to prove the equivalence up to some bound.
- Goal: To prove that $\mathrm{F} 1(\mathrm{x}) \equiv \mathrm{F} 2(\mathrm{x})$ or that $\mathrm{F} 1(\mathrm{x}) \neq \mathrm{F} 2(\mathrm{x})$

SAT solver
result: SATISFIABLE model: 001111110101

ROBDD

To calculate average arithmetic error, ε_{i} can be successively increased from 1 to $\varepsilon_{\text {max }}$

- Known issues of the common methods in verification of arithmetic circuits
- BDD application to verification of arithmetic circuits is limited by the prohibitively high memory requirement for complex arithmetic circuits, such as multipliers.
- SAT-based approaches are known to be computationally expensive and not scalable.
- Proposed approach: Use a pseudo-Boolean polynomial representation [Ciesielski, 2015] of arithmetic circuits to determine the quality of an approximation.

Verification of Gate-level Arithmetic Circuits by Function Extraction [M. Ciesielski, C. Yu, D. Liu, and W. Brown, 2015]


```
\[
z 3=0
\]
z2 = s5_and2
z1 = s8_or2
z0 = s6_and2
s8_or2 = s4_and2 + s7_and2 - s4_and2 * s7_and2
```

s7_and2 = b0 * a1
s6_and2 = a0 * b0
s5_and2 = b1 * a1

$$
\mathrm{s} 4 _a \mathrm{nd} 2=\mathrm{b} 1 * \mathrm{a} 0
$$

2-bit approximate multiplier
[Kulkarni et al., 2011]

Specification:
$z 0^{*} 2^{\wedge} 0+z 1^{*} 2^{\wedge} 1+z 2^{*} 2^{\wedge} 2+z 3^{*} 2^{\wedge} 3-\left(a 0^{*} b 0+2^{*} a 0^{*} b 1+2^{*} a 1^{*} b 0+4^{*} a 1^{*} b 1\right)$
result: -2*a0*a1*b0*b1
Error is equal to -2 IFF $a 0=a 1=b 0=b 1=1$

4-bit approximate multiplier [Vasicek, 2014]

$\mathrm{z} 7=\mathrm{s} 71$ or2
z6 = s69_xor2
z5 = s66_xor2
$\mathrm{z4}=\mathrm{s} 60$ _xor2
z3 = s56_xor2
z2 $=$ s34_xor2
z1 = s48_or2
z0 = s29_and2
s71_or2 = s65_and2 + s70_and2 - s65_and2 * s70_and2 s70_and2 = s44_and2 * s68_or2
s69_xor2 = s64_xor2+s68_or2-2*s64_xor2*s68_or2 s68_or2 $=$ s63_and2 + s67_and2 - s63_and2 * s67_and2 s67_and2 = s62_xor2 * s61_and2
s66_xor2 = s62_xor2+s61_and2-2*s62_xor2*s61_and2 s65_and2 = s37_and2 * s59_or2
s64_xor2 = s44_and2+s59_or2-2*s44_and2*s59_or2 s63_and2 = s55_xor2 * s58_or2
s62_xor2 = s55_xor2+s58_or2-2*s55_xor2*s58_or2 s61_and2 = s53_xor2 * s57_or2
s60_xor2 = s53_xor2+s57_or2-2*s53_xor2*s57_or2 s59_or2 $=\mathrm{s} 32$ _and $2+\mathrm{s} 54$ _and2 - s32_and2 * s54_and2 s58_or2 $=$ s52_and2 + s51_and2 - s52_and2 * s51_and2 s57_or2 $=$ s50_and2 + s 46 _and2 - s50_and2 * s46_and2
s56_xor2 $=$ s45_xor2+s13_and2-2*s45_xor2*s13_and2 s55_xor2 = s49_xor2+s37_and2-2*s49_xor2*s37_and2 s54_and2 = s49_xor2 * s37_and2
s53_xor2 = s47_xor2+s16_and2-2*s47_xor2*s16_and2 s52_and2 $=$ s 40 _xor2 ${ }^{*}$ s39_and2
s51_and2 $=$ s47_xor2 $*$ s16_and2
s50_and2 $=$ s38_xor2 * s42_or2
s49_xor2 = s22_and2+s35_or2-2*s22_and2*s35_or2
s48_or2 = s25_and2 + s30_or2 - s25_and2 * s30_or2
s47_xor2 $=$ s 40 _xor2+s39_and2 - 2*s $40 _$xor2*s39_and2
s46_and2 = s45_xor2 * s13_and2
s45_xor2 = s38_xor2+s42_or2-2*s38_xor2*s42_or2
s44_and2 = b3 * a3
s42_or2 = s27_and2 + s26_and2 - s27_and2 * s26_and2 s40_xor2 = s20_and2+s18_and2-2*s20_and2*s18_and2 s39_and2 $=$ s28_xor2 * s19_and2
s38_xor2 $=$ s28_xor2+s19_and2-2*s28_xor2*s19_and2 s37_and2 = b3 * a2
s35_or2 = s25_and2 + s32_and2 - s25_and2 * s32_and2 s34_xor2 = s11_and2+s31_nor2-2*s11_and2*s31_nor2 s32_and2 = s18_and2 * s15_and2
s31_nor2 = 1-s27_and2-s24_inva+s27_and2*s24_inva s30_or2 $=$ s21_and2 + s8_and2 - s21_and2 * s8_and2
s29_and2 $=$ s9_and2 $*$ a0
s28_xor2 = s9_and2+s17_and2-2*s9_and2*s17_and2
s27_and2 = s10_and2 * s12_and2
s26_and2 $=$ s11_and2 * s23_or2
s25_and2 = s9_and2 * s17_and2
s24_inva = 1-s23_or2
s23_or2 = s10_and2 + s12_and2 - s10_and2 * s12_and2
s22_and2 = a3 * b2
s21_and2 = b1 * a0
s20_and2 = s15_and2 * s14_inva
s19_and2 $=$ b2 * a1
s18_and2 $=$ a2 $*$ b2
s17_and2 $=\mathrm{a} 2$ * b1
s16_and2 = b3 * a1
s15_and2 = b1 * a3
s14_inva $=1$-s12_and2
s13_and2 = b3 * a0
s12_and2 $=$ a2 $*$ b0
s11_and2 = a0 * b2
s10_and2 $=$ a1 * b1
s9_and2 = a3 * b0
s8_and2 = b0 * a1

Specification:

z0*2^0 + z1*2^1 + z2*2^2 + z3*2^3 + z4*2^4 + z5*2^5 + z6*2^6 + z7*2^7 -
$(a 0 * b 0+2 * a 0 * b 1+2 * a 1 * b 0+4 * a 0 * b 2+4 * a 1 * b 1+4 * a 2 * b 0+8 * a 0 * b 3+8 * a 1 * b 2+8 * a 2 * b 1+8 * a 3 * b 0+16 * a 1 * b 3+16 * a 2$ *b2+16*a3*b1+32*a2*b3+32*a3*b2+64*a3*b3)

Result:

E = -a0*b0 + a2*a3*b0*b1 + 2*a0*a1*b0*b1 Input variables: a0,a1,a2,a3 b0,b1,b2,b3

Quality metrics:

Worst-case error: 2
Number of invalid responses: $4 \cdot 17=68$
Average error: $4 \cdot 18 / 68=1.05$

$\#$	a_{3}	a_{2}	a_{1}	a_{0}	b_{3}	b_{2}	b_{1}	b_{0}	E
1	0	0	0	1	x	x	0	1	-1
2	0	0	1	1	x	x	0	1	-1
3	0	1	0	1	x	x	0	1	-1
4	0	1	1	1	x	x	0	1	-1
5	1	0	0	1	x	x	0	1	-1
6	1	0	1	1	x	x	0	1	-1
7	1	1	0	1	x	x	0	1	-1
8	1	1	1	1	x	x	0	1	-1
9	0	0	0	1	x	x	1	1	-1
10	0	0	1	1	x	x	1	1	1
11	0	1	0	1	x	x	1	1	-1
12	0	1	1	1	x	x	1	1	1
13	1	0	0	1	x	x	1	1	-1
14	1	0	1	1	x	x	1	1	1
15	1	1	0	0	x	x	1	1	1
16	1	1	1	0	x	x	1	1	1
17	1	1	1	1	x	x	1	1	2

- A notion of formal relaxed equivalence checking has been briefly introduced.
- Even if some of the equivalence checking methods can be directly extended to support relaxed equivalence checking, the scalability of common approaches represents a limiting factor.
- A suitable formal relaxed equivalence checking method needs to be developed.

Thank You For Your Attention !

