Proteus: Exploiting Numerical Precision Variability in Deep Neural Networks

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger and Andreas Moshovos.

Motivation

- Deep Neural Networks (DNNs) are machine learning algorithms that are state of the art for a range of complex tasks
- Computationally demanding, large memory footprints
- E.g. VGG-19: **19 Billion FLOPs** and **576 MB** [1]
- DNNs are very tolerant to approximation
- Big opportunity to improve performance and efficiency via approximate computing

[1] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556

Deep Neural Networks

- Applies successive layers of computation using learned weights to perform difficult tasks such as:
 - Speech recognition

Prior Work

In prior work [3], we analysed the sensitivity of DNNs to reducing the precision of **fixed-point** representations for **weights** and **data**.

Prior Work

• Minimize precision per layer while maintaining output prediction **accuracy within 1%** vs. a 16 bit baseline

Network	Bits per data element per layer	Traffic Ratio	Bits per weight	Traffic Ratio
LeNet	2,4,3,3	0.16	7	0.44
Convnet	8,7,7,5,5	0.48	9	0.56
AlexNet	10,8.8,8,8,8,6,6,4	0.56	10	0.63
NiN	10,10,9,12,12,11,11,11,10,10,9	0.64	10	0.63
GoogLeNet	14,10,12,12,12,12,11,11,11,10,9	0.72	9	0.56

Accelerator Energy Breakdown

• Model energy of a DNN Accelerator

Network

Proteus

• Dynamically configurable, bit aligned reduced precision hardware memory compression

Baseline Memory

Example

- 4 bit words
- 2 words per row

h₃ h₂ h₁ h₀ $\mathbf{g}_3 | \mathbf{g}_2$ g_1 g_0 f₀ f_3 f_2 f_1 **e**₃ **e**₂ e_0 e_1 d_0 **C**₃ d_3 d_2 **C**₀ d_1 C_2 C_1 a_3 a_2 b_3 a_1 D_0 a D_2 D_1

Packed Memory

Example

- 4 bit words
- 2 words per row
- 3 bit reduced precision
- Footprint = 3/4 baseline
 - (ideally)

Design for one column of words

Unpacker

Packer

Packer / Unpacker

Pros

- Simple design
- Negligible performance impact
 - 2 additional pipeline stages

Cons

- Forces a **read/write order** on the data
 - Won't work for certain applications/architectures
- Imposes **alignment constraint** on the data
 - May not get ideal compression

Alignment Constraint

Constraint: must unpack one data element every cycle Then: first data element in each window must be aligned

Note: Only affects data, not weights

Alignment Penalty

•Alignment yields non-ideal memory traffic scaling

Accelerator

DaDianNao [4]

- State of the art neural network accelerator
- 16 bit fixed-point computation
- **16 Tiles** with compute and local memory
- 36 MB of on chip eDRAM
- Area: 68 mm²
- Power: 16 W
- Frequency: 606 MHz

DaDianNao Tile

Proteus on DaDianNao

Methodology

- Baseline: DaDianNao 16 bit fixed-point storage + compute
 - + 2GB DDR3 for storing network weights
- Logic : pipeline, packers and unpackers
 - Synthesized with Synopsis Design Compiler with the 45nm FreePDK library
- Energy models for memory:
 - SRAM buffers: CACTI v5.3
 - eDRAM: Destiny modeling tool
 - DRAM: Dramsim2

Energy Savings

Conclusion

- We leverage the reduced precision tolerance of DNNs to enable dynamically configurable, bit aligned memory compression
- Integrate a simple packer/unpacker design into a state of the art neural network accelerator
- Reduce energy by 14% without impacting speed with at most 1% loss of accuracy

Future work

- Static Energy
 - Turn off memory banks due to reduced footprint
- Improve DaDianNao Energy Model
 - Add power models for interconnect and off chip communication
- Reduced precision compute

Thanks!

Questions?

Email: Patrick.judd@mail.utoronto.ca

GPU Evaluation

Energy Savings per Network

Traffic Breakdown

Packer

- Packer is essentially the reverse set of operations
- The unpacked value (full precision) needs to be rounded and potentially saturated to produce the closest reduced precision value

Unpacker

3-D Convolution

