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• Deep Neural Networks (DNNs) are machine learning algorithms that 
are state of the art for a range of complex tasks

• Computationally demanding, large memory footprints 

• E.g. VGG-19: 19 Billion FLOPs and 576 MB [1]

• DNNs are very tolerant to approximation

• Big opportunity to improve performance and efficiency via approximate 
computing

Motivation
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[1] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv:1409.1556 



• Applies successive layers of computation using learned weights to 
perform difficult tasks such as:

• Speech recognition 

• Image classification

Deep Neural Networks
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[2] https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb

[2]

3D Convolution / Inner Product



In prior work [3], we analysed the sensitivity of DNNs to reducing the 
precision of fixed-point representations for weights and data.

Prior Work
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[3] Judd et al. “Reduced-Precision Strategies for Bounded Memory in Deep Neural Nets,” arXiv:1511.05236



• Minimize precision per layer while maintaining output prediction 
accuracy within 1% vs. a 16 bit baseline

Prior Work
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Rounding up to 16/8/4 bit wastes a lot of bits

Network Bits per data element per 
layer

Traffic
Ratio

Bits per 
weight

Traffic 
Ratio

LeNet 2,4,3,3 0.16 7 0.44

Convnet 8,7,7,5,5 0.48 9 0.56

AlexNet 10,8,8,8,8,8,6,4 0.56 10 0.63

NiN 10,10,9,12,12,11,11,11,10,10,9 0.64 10 0.63

GoogLeNet 14,10,12,12,12,12,11,11,11,10,9 0.72 9 0.56



• Model energy of a DNN Accelerator

Accelerator Energy Breakdown
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• Dynamically configurable, bit aligned reduced precision hardware 
memory compression

Proteus
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Example

• 4 bit words

• 2 words per row

Baseline Memory
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Example

• 4 bit words

• 2 words per row

• 3 bit reduced precision

• Footprint = ¾ baseline

• (ideally)

Packed Memory
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Unpacker Unpacker

Design for one column of words



Unpacker
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c0 a2 a1 a0

c2 c1e1 e0

c0 a2 a1 a0

a2 a1 a0a2

a2 a1 a0 e1 c0c2 c1e0

c0c2 c1c2

>>

Extend
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Packer
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>>

Round/Saturate

a2 a1 a0

c3 c2 c1 c0

c2 c1 c000111000

1



Packer / Unpacker

Pros

• Simple design

• Negligible performance impact
• 2 additional pipeline stages

Cons

• Forces a read/write order on the data
• Won’t work for certain applications/architectures

• Imposes alignment constraint on the data
• May not get ideal compression
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Constraint: must unpack one data element every cycle 

Then: first data element in each window must be aligned

Alignment Constraint
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•Alignment yields non-ideal memory traffic scaling

Alignment Penalty
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DaDianNao [4]

• State of the art neural network accelerator

• 16 bit fixed-point computation

• 16 Tiles with compute and local memory

• 36 MB of on chip eDRAM

• Area: 68 mm^2

• Power: 16 W

• Frequency: 606 MHz

Accelerator

15[4] Chen et. Al, “DaDianNao: A Machine-Learning Supercomputer,” MICRO 2014



Tile

DaDianNao Tile
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Proteus on DaDianNao

17

Data in

Weights

Data outPipeline

x16

x16

x256

U
n
p
a

c
k
e
r

U
n
p
a

c
k
e
r P
a
c
k
e
r



Methodology

• Baseline: DaDianNao - 16 bit fixed-point storage + compute

• + 2GB DDR3 for storing network weights

• Logic : pipeline, packers and unpackers 

• Synthesized with Synopsis Design Compiler with the 45nm FreePDK library

• Energy models for memory:

• SRAM buffers: CACTI v5.3

• eDRAM: Destiny modeling tool

• DRAM: Dramsim2
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Energy Savings
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• We leverage the reduced precision tolerance of DNNs to enable 
dynamically configurable, bit aligned memory compression

• Integrate a simple packer/unpacker design into a state of the art neural 
network accelerator

• Reduce energy by 14% without impacting speed with at most 1% loss of 
accuracy 

Conclusion

20



• Static Energy
• Turn off memory banks due to reduced footprint

• Improve DaDianNao Energy Model
• Add power models for interconnect and off chip communication

• Reduced precision compute

Future work
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Thanks! Questions?
Email: Patrick.judd@mail.utoronto.ca



GPU Evaluation
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Energy Savings per Network
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Traffic Breakdown
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• Packer is essentially the reverse set of operations

• The unpacked value (full precision) needs to be rounded and potentially 
saturated to produce the closest reduced precision value

Packer
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Unpacker
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3-D Convolution
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