
HISTORY-BASED PIECEWISE

APPROXIMATION SCHEME FOR

PROCEDURES

Aurangzeb and Rudolf Eigenmann

Outline

 Motivation for approximating procedures

 Contributions of the paper

 History-based piecewise scheme for approximating procedures for speed

 2 flavors – uniform and non-uniform

 Four realizations with features

 Results of approximating 90 functions from GSL (GNU Scientific Library)

 Results on benchmarks and real applications

2

Motivation

 Approximate Computing

 Procedures with pure functional behavior

 Mathematical and Scientific functions

 Other functions

 State of the art

 Numerical Analysis Techniques

3

Contributions

 History-based piecewise scheme for approximating procedures for speed

 2 flavors – uniform and non-uniform

 Four realizations with features

 Results of approximating 90 functions from GSL (GNU Scientific Library)

 Results on benchmarks and real applications

4

History-based Piecewise Approximation

 Approximating function with one polynomial does not generally give good

approximation

 Piecewise schemes give better results

 Forming regions and choosing polynomials is difficult

 History-based piecewise approximation scheme

 Forms regions based on history

 Uses low-order polynomials for approximation

 Types

 Non-uniform piecewise approximation

 Uniform piecewise approximation

5

History-based Piecewise Approximation

6

Overall Execution

Training

Phase

Production

Phase

Collect history to form regions

Search the history to find the

region an input falls into

Approximate within that region

using low-order polynomials

Different Training Scenarios

7

Overall

Execution
Production

Phase

Overall

Execution

Training

Phase

Production

Phase

Overall

Execution

Training

Phase

Production

Phase

Offline training Static online training Dynamic online training

Training

Phase

Production

Phase

Non-uniform Piecewise Approximation

 Non-uniform regions based on learnt history of input-output behavior

 Allows for non-uniform concentration of history elements

 Approximation scheme

 Constant

 1-degree polynomial (interpolation)

 higher degree polynomials are possible

 Realizations

1. Binary search on sorted array

2. Binary search tree (BST)

3. Red-black tree (RBT)

8

Function

Non-uniform regions of input range

Approximation

Non-uniform Piecewise Approximation (3/5)

 Binary search on sorted array

9

Overall Execution

Training

Phase

Production

Phase

80 20 65 10 43 437

10 20 37 43 65 804

In order

addition

Quick sort

Binary Search

+

Approximation

Non-uniform Piecewise Approximation (4/5)

 Binary Search Tree (BST)

 Finding a region for:

40

18

53

10

62

22

4210

38

82

95

50

71175 55

Non-uniform Piecewise Approximation (5/5)

 Red-Black Tree (RBT)

 BST can become a list in the worst case

 RBT is approximately balanced

11

62

2

8

18

22

55

78

40

Sequence: 40, 2, 55, 8, 18, 22, 78, 62

62

2

8

18

22

55
78

40

Uniform Piecewise Approximation (1/2)

 Uniform regions

 Currently formed based on profiling

information, possible to guess from first m

function invocations

 Does not allows for non-uniform concentration of

history elements

 Approximation scheme

 0-degree polynomial (currently one value

per region is stored)

 higher degree polynomials are possible

12

Uniform regions of input range

Function

Approximation

Uniform Piecewise Approximation (2/2)

 Realization via a hash table

13

Region size

Black – untrained

Gray – trained

Feature Comparison of Schemes

Scheme Storage & lookup Fixed/Extendable Lookup Complexity
Supports non-uniform

concentration?
Order

Non-uniform Array + Binary search Fixed O(log N) Yes Sorted

Non-uniform Binary search tree (BST) Extendable > O(log N) Yes
Binary search tree

property

Non-uniform Red-black tree Extendable ~O(log N) Yes
BST + red-black

property

Uniform Hash-table Fixed O(1) No Ranges are sorted

14

Evaluation (1/6)

 System

 Intel Core2 Duo CPU running at 3 GHz, 6144 KB cache, 4 GB RAM

 Ubuntu 12.04

 Testing

 Functions

 Mathematical and scientific functions from GSL (GNU Scientific Library)

 Benchmarks

 Blackscholes and Swaptions from PARSEC benchmark suite

 Applications

 CNN-HDD: Neural network application for handwritten digit detection

15

Evaluation (2/6)

 Functions from GSL

 Tested 90 functions

 Selected a realistic input range for each function

 Called each function 1,000,000 times with random inputs

 Results for uniform approximation scheme

 Able to speed up 92% functions

 For 71% functions, avg speedup is 9.3x for an avg RMS error of 0.06

 For another 15%, avg speedup is 9.5x for an avg RMS error of 0.49

 The rest report large (188) RMS error for an average speedup of 12x

 Functions with exponential behavior have higher absolute RMS

16

Evaluation (3/6)

 Functions from GSL

17

0

10

20

30

40

50

60

Function Speedup

Speedup

Evaluation (4/6)

 Results for applications

 Avg speedup = 1.74x

 Avg %error = 0.5%

18

Application Domain Function #invocations
Max Possible

speedup
Error

Error

Metric

Application

speed up

regions, region size, and

memory (KB)

CNN-HDD Machine Learning tanh 8,010,000 1.8 0.02% %undetected images 1.68 702, 0.05, 5.6

Blackscholes Financial CNDF 13,107,200 2.48 0.048 RMS Error 2.27 7200, 0.005, 57.6

Swaptions Financial CumNormalInv 76,800,000 1.33 0.005 RMS Error 1.28 200, 0.005, 1.6

0

0.5

1

1.5

2

2.5

3

CNN-HDD Blackscholes Swaptions ATMI

Speedup

Speedup for Applications

Max

Achieved

Evaluation (5/6)

 Comparison of non-uniform techniques using Blackscholes application

 Effect of training on speedup and Error

19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000

RMS Error
Speedup

Training

Training vs. Speedup & Error

Speedup-RBT Speedup-BST Speedup BSA Error-RBT Error-BST Error-BSA

Evaluation (6/6)

 Effect of number of regions on speedup and error in the uniform scheme

20

Uniform scheme for Blackscholes application

0

0.5

1

1.5

2

2.5

3

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

0 200 400 600 800

Speedup

of Ranges

of Ranges vs. Speedup & Error

Speedup

RMS Error

Related Work (1/6)

 Numerical Analysis

 Polynomial Approximation (monomials (1, x, x2, x3, …), Chebyshev, others)

 Splines (cubic splines, others)

 Machine Learning

 ANN (Artificial Neural Networks), SVMs (Support Vector Machines),

Fitness approximation in Genetic Algorithms

 Approximate Computing

 Neural network based approach

 Approximate memoization (Paraprox)

21

Related Work (2/6)

 Comparison with Numerical Analysis techniques

 Polynomial approximation using monomial basis (1, x, x2, x3, …)

 First n+1 inputs

 Evenly spaced data points over the entire input range

 Chebyshev polynomial approximation

 Cublic splines

 First n+1 inputs

 Evenly spaced intervals

22

Related Work (3/6)

23

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45

Speedup

Data points

Comparison of Numerical Analysis Techniques on CNN-HDD
Effect of data points on speedup

Speedup-polynomial-input Speedup-polynomial-equidistant Speedup-chebyshev

Speedup-cspline-inputs Speedup-cspline-equidistant Speedup-uniform

Related Work (4/6)

24

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

%error

Data points

Comparison of Numerical Analysis Techniques on CNN-HDD
Effect of data points on error

%error-polyonomial-inputs %error-polynomial-equidistant %error-chebyshev

%error-cspline-inputs %error-cspline-equidistant %error-uniform

Related Work (5/6)

 Comparison with Numerical Analysis techniques on CNN-HDD

application

25

Uniform

RBT BST BSA

CSpline
Chebyl

Poly

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Speedup

Comparison of techniques for CNN-HDD

Uniform

Red-black tree

Binary Search Tree

Binary Search on Array

Cubic Spline (equidistant)

Chebyshev Polynomial

Polynomial (equidistant)

Related Work (6/6)

 Comparison with Numerical Analysis techniques on CNN-HDD

application

26

Uniform

RBT BST BSA CSpline

Chebyshev
Polynomial

Polynomial
(equidistant)

0

2

4

6

8

10

12

%Error

Comparison of techniques for CNN-HDD

Uniform

Red-black tree

Binary Search Tree

Binary Search on Array

Cubic Spline (equidistant)

Chebyshev Polynomial

Polynomial (equidistant)

Future Work

 Support for 2nd degree polynomial

 Support for dynamic online training

 Automatic code generation and parameter selection

27

Thanks!

28

