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Motivation

 Approximate Computing

 Procedures with pure functional behavior

 Mathematical and Scientific functions

 Other functions

 State of the art

 Numerical Analysis Techniques
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Contributions
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4



History-based Piecewise Approximation

 Approximating function with one polynomial does not generally give good 

approximation

 Piecewise schemes give better results

 Forming regions and choosing polynomials is difficult

 History-based piecewise approximation scheme

 Forms regions based on history

 Uses low-order polynomials for approximation

 Types

 Non-uniform piecewise approximation

 Uniform piecewise approximation
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History-based Piecewise Approximation
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Different Training Scenarios
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Non-uniform Piecewise Approximation

 Non-uniform regions based on learnt history of input-output behavior

 Allows for non-uniform concentration of history elements

 Approximation scheme

 Constant

 1-degree polynomial (interpolation)

 higher degree polynomials are possible

 Realizations

1. Binary search on sorted array

2. Binary search tree (BST)

3. Red-black tree (RBT)
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Non-uniform Piecewise Approximation (3/5)

 Binary search on sorted array
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Non-uniform Piecewise Approximation (4/5)

 Binary Search Tree (BST)

 Finding a region for:
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Non-uniform Piecewise Approximation (5/5)

 Red-Black Tree (RBT)

 BST can become a list in the worst case

 RBT is approximately balanced
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Uniform Piecewise Approximation (1/2)

 Uniform regions

 Currently formed based on profiling 

information, possible to guess from first m

function invocations 

 Does not allows for non-uniform concentration of 

history elements

 Approximation scheme

 0-degree polynomial (currently one value 

per region is stored)

 higher degree polynomials are possible
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Uniform Piecewise Approximation (2/2)

 Realization via a hash table
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Feature Comparison of Schemes

Scheme Storage & lookup Fixed/Extendable Lookup Complexity
Supports non-uniform 

concentration?
Order

Non-uniform Array + Binary search Fixed O(log N) Yes Sorted

Non-uniform Binary search tree (BST) Extendable > O(log N) Yes
Binary search tree 

property

Non-uniform Red-black tree Extendable ~O(log N) Yes
BST + red-black 

property

Uniform Hash-table Fixed O(1) No Ranges are sorted
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Evaluation (1/6)

 System

 Intel Core2 Duo CPU running at 3 GHz, 6144 KB cache, 4 GB RAM

 Ubuntu 12.04

 Testing

 Functions

 Mathematical and scientific functions from GSL (GNU Scientific Library)

 Benchmarks

 Blackscholes and Swaptions from PARSEC benchmark suite

 Applications

 CNN-HDD: Neural network application for handwritten digit detection
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Evaluation (2/6)

 Functions from GSL

 Tested 90 functions

 Selected a realistic input range for each function

 Called each function 1,000,000 times with random inputs

 Results for uniform approximation scheme

 Able to speed up 92% functions

 For 71% functions, avg speedup is 9.3x for an avg RMS error of 0.06

 For another 15%, avg speedup is 9.5x for an avg RMS error of 0.49

 The rest report large (188) RMS error for an average speedup of 12x

 Functions with exponential behavior have higher absolute RMS
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Evaluation (3/6)

 Functions from GSL
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Evaluation (4/6)

 Results for applications

 Avg speedup = 1.74x

 Avg %error = 0.5%
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Application Domain Function #invocations
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speedup
Error 

Error

Metric

Application 

speed up

# regions, region size, and 

memory (KB)

CNN-HDD Machine Learning tanh 8,010,000 1.8 0.02% %undetected images 1.68 702, 0.05, 5.6

Blackscholes Financial CNDF 13,107,200 2.48 0.048 RMS Error 2.27 7200, 0.005, 57.6

Swaptions Financial CumNormalInv 76,800,000 1.33 0.005 RMS Error 1.28 200, 0.005, 1.6
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Evaluation (5/6)

 Comparison of non-uniform techniques using Blackscholes application

 Effect of training on speedup and Error
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Evaluation (6/6)

 Effect of number of regions on speedup and error in the uniform scheme
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Related Work (1/6)

 Numerical Analysis

 Polynomial Approximation (monomials (1, x, x2, x3, …), Chebyshev, others)

 Splines (cubic splines, others)

 Machine Learning

 ANN (Artificial Neural Networks), SVMs (Support Vector Machines), 

Fitness approximation in Genetic Algorithms

 Approximate Computing

 Neural network based approach

 Approximate memoization (Paraprox)

21



Related Work (2/6)

 Comparison with Numerical Analysis techniques

 Polynomial approximation using monomial basis (1, x, x2, x3, …)

 First n+1 inputs

 Evenly spaced data points over the entire input range

 Chebyshev polynomial approximation

 Cublic splines

 First n+1 inputs

 Evenly spaced intervals
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Related Work (3/6)

23

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45

Speedup

Data points

Comparison of Numerical Analysis Techniques on CNN-HDD
Effect of data points on speedup

Speedup-polynomial-input Speedup-polynomial-equidistant Speedup-chebyshev

Speedup-cspline-inputs Speedup-cspline-equidistant Speedup-uniform



Related Work (4/6)
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Related Work (5/6)

 Comparison with Numerical Analysis techniques on CNN-HDD 

application
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Related Work (6/6)

 Comparison with Numerical Analysis techniques on CNN-HDD 

application
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Future Work

 Support for 2nd degree polynomial

 Support for dynamic online training

 Automatic code generation and parameter selection 
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Thanks!
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