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Motivation

 Approximate Computing

 Procedures with pure functional behavior

 Mathematical and Scientific functions

 Other functions

 State of the art

 Numerical Analysis Techniques
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Contributions

 History-based piecewise scheme for approximating procedures for speed

 2 flavors – uniform and non-uniform

 Four realizations with features

 Results of approximating 90 functions from GSL (GNU Scientific Library)

 Results on benchmarks and real applications
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History-based Piecewise Approximation

 Approximating function with one polynomial does not generally give good 

approximation

 Piecewise schemes give better results

 Forming regions and choosing polynomials is difficult

 History-based piecewise approximation scheme

 Forms regions based on history

 Uses low-order polynomials for approximation

 Types

 Non-uniform piecewise approximation

 Uniform piecewise approximation
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History-based Piecewise Approximation
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Different Training Scenarios
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Non-uniform Piecewise Approximation

 Non-uniform regions based on learnt history of input-output behavior

 Allows for non-uniform concentration of history elements

 Approximation scheme

 Constant

 1-degree polynomial (interpolation)

 higher degree polynomials are possible

 Realizations

1. Binary search on sorted array

2. Binary search tree (BST)

3. Red-black tree (RBT)
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Non-uniform Piecewise Approximation (3/5)

 Binary search on sorted array
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Non-uniform Piecewise Approximation (4/5)

 Binary Search Tree (BST)

 Finding a region for:
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Non-uniform Piecewise Approximation (5/5)

 Red-Black Tree (RBT)

 BST can become a list in the worst case

 RBT is approximately balanced
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Uniform Piecewise Approximation (1/2)

 Uniform regions

 Currently formed based on profiling 

information, possible to guess from first m

function invocations 

 Does not allows for non-uniform concentration of 

history elements

 Approximation scheme

 0-degree polynomial (currently one value 

per region is stored)

 higher degree polynomials are possible
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Uniform Piecewise Approximation (2/2)

 Realization via a hash table
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Feature Comparison of Schemes

Scheme Storage & lookup Fixed/Extendable Lookup Complexity
Supports non-uniform 

concentration?
Order

Non-uniform Array + Binary search Fixed O(log N) Yes Sorted

Non-uniform Binary search tree (BST) Extendable > O(log N) Yes
Binary search tree 

property

Non-uniform Red-black tree Extendable ~O(log N) Yes
BST + red-black 

property

Uniform Hash-table Fixed O(1) No Ranges are sorted
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Evaluation (1/6)

 System

 Intel Core2 Duo CPU running at 3 GHz, 6144 KB cache, 4 GB RAM

 Ubuntu 12.04

 Testing

 Functions

 Mathematical and scientific functions from GSL (GNU Scientific Library)

 Benchmarks

 Blackscholes and Swaptions from PARSEC benchmark suite

 Applications

 CNN-HDD: Neural network application for handwritten digit detection
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Evaluation (2/6)

 Functions from GSL

 Tested 90 functions

 Selected a realistic input range for each function

 Called each function 1,000,000 times with random inputs

 Results for uniform approximation scheme

 Able to speed up 92% functions

 For 71% functions, avg speedup is 9.3x for an avg RMS error of 0.06

 For another 15%, avg speedup is 9.5x for an avg RMS error of 0.49

 The rest report large (188) RMS error for an average speedup of 12x

 Functions with exponential behavior have higher absolute RMS
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Evaluation (3/6)

 Functions from GSL
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Evaluation (4/6)

 Results for applications

 Avg speedup = 1.74x

 Avg %error = 0.5%
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Application Domain Function #invocations
Max Possible 

speedup
Error 

Error

Metric

Application 

speed up

# regions, region size, and 

memory (KB)

CNN-HDD Machine Learning tanh 8,010,000 1.8 0.02% %undetected images 1.68 702, 0.05, 5.6

Blackscholes Financial CNDF 13,107,200 2.48 0.048 RMS Error 2.27 7200, 0.005, 57.6

Swaptions Financial CumNormalInv 76,800,000 1.33 0.005 RMS Error 1.28 200, 0.005, 1.6
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Evaluation (5/6)

 Comparison of non-uniform techniques using Blackscholes application

 Effect of training on speedup and Error
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Evaluation (6/6)

 Effect of number of regions on speedup and error in the uniform scheme
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Related Work (1/6)

 Numerical Analysis

 Polynomial Approximation (monomials (1, x, x2, x3, …), Chebyshev, others)

 Splines (cubic splines, others)

 Machine Learning

 ANN (Artificial Neural Networks), SVMs (Support Vector Machines), 

Fitness approximation in Genetic Algorithms

 Approximate Computing

 Neural network based approach

 Approximate memoization (Paraprox)
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Related Work (2/6)

 Comparison with Numerical Analysis techniques

 Polynomial approximation using monomial basis (1, x, x2, x3, …)

 First n+1 inputs

 Evenly spaced data points over the entire input range

 Chebyshev polynomial approximation

 Cublic splines

 First n+1 inputs

 Evenly spaced intervals
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Related Work (3/6)
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Related Work (4/6)
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Related Work (5/6)

 Comparison with Numerical Analysis techniques on CNN-HDD 

application

25

Uniform

RBT BST BSA

CSpline
Chebyl

Poly

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Speedup

Comparison of techniques for CNN-HDD

Uniform

Red-black tree

Binary Search Tree

Binary Search on Array

Cubic Spline (equidistant)

Chebyshev Polynomial

Polynomial (equidistant)



Related Work (6/6)

 Comparison with Numerical Analysis techniques on CNN-HDD 

application
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Future Work

 Support for 2nd degree polynomial

 Support for dynamic online training

 Automatic code generation and parameter selection 
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Thanks!
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