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Motivation
e

1 Approximate Computing

71 Procedures with pure functional behavior
o Mathematical and Scientific functions

=1 Other functions

1 State of the art

=1 Numerical Analysis Techniques



Contributions

History-based piecewise scheme for approximating procedures for speed

2 flavors — uniform and non-uniform

Four realizations with features

Results of approximating 20 functions from GSL (GNU Scientific Library)

Results on benchmarks and real applications



History-based Piecewise Approximation

Approximating function with one polynomial does not generally give good
approximation

Piecewise schemes give better results
Forming regions and choosing polynomials is difficult

History-based piecewise approximation scheme
Forms regions based on history
Uses low-order polynomials for approximation
Types

Non-uniform piecewise approximation

Uniform piecewise approximation



History-based Piecewise Approximation
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Training Collect history to form regions
Phase
Search the history to find the
region an input falls into
Overall Execution
Approximate within that region
using low-order polynomials
Production

Phase




Different Training Scenarios

Offline training I Static online training Dynamic online training
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Non-uniform Piecewise Approximation
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Non-uniform regions based on learnt history of input-output behavior

Allows for non-uniform concentration of history elements

Approximation scheme
Constant
1-degree polynomial (interpolation)

higher degree polynomials are possible

Realizations

Binary search on sorted array

Binary search tree (BST)
Red-black tree (RBT)

Function

Approximation

I—I I I

Non-uniform regions of input range



Non-uniform Piecewise Approximation (3/5)
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71 Binary search on sorted array
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Phase addition
Quick sort
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Non-uniform Piecewise Approximation (4/5)
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1 Binary Search Tree (BST)

© Finding a region for: g
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Non-uniform Piecewise Approximation (5/5)

Red-Black Tree (RBT)

BST can become a list in the worst case

RBT is approximately balanced

Sequence: 40, 2, 55, 8, 18, 22,78, 62



Uniform Piecewise Approximation (1/2)

1 Uniform regions

=1 Currently formed based on profiling

information, possible to guess from first m Function

function invocations
Approximation

1 Does not allows for non-uniform concentration of

history elements —

01 Approximation scheme

X ! — I I I I 1]

O-degree polynomial (currently one value

per region is stored) Uniform regions of input range

higher degree polynomials are possible



Uniform Piecewise Approximation (2/2)

Realization via a hash table

Black — untrained

Gray — trained

Region size ‘>[




Feature Comparison of Schemes
I

Non-uniform Array + Binary search Fixed O(log N) Yes Sorted

Binary search tree

Non-uniform Binary search tree (BST) Extendable > Oflog N) Yes
property

BST + red-black

Non-uniform Red-black tree Extendable ~O(log N) Yes
property

Uniform Hash-table Fixed o(1) No Ranges are sorted




Evaluation (1/6)

System

Intel Core2 Duo CPU running at 3 GHz, 6144 KB cache, 4 GB RAM
Ubuntu 12.04

Testing

Functions

Mathematical and scientific functions from GSL (GNU Scientific Library)

Benchmarks
Blackscholes and Swaptions from PARSEC benchmark suite

Applications

CNN-HDD: Neural network application for handwritten digit detection



Evaluation (2/6)

Functions from GSL
Tested 90 functions
Selected a realistic input range for each function
Called each function 1,000,000 times with random inputs

Results for uniform approximation scheme

Able to speed up 92% functions

For 71% functions, avg speedup is 9.3x for an avg RMS error of 0.06
For another 15%, avg speedup is 9.5x for an avg RMS error of 0.49
The rest report large (188) RMS error for an average speedup of 12x

Functions with exponential behavior have higher absolute RMS



Evaluation (3/6)
oz 4

1 Functions from GSL

Function Speedup
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Evaluation (4/6)
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71 Results for applications Speedup for Applications

3
1 Avg speedup = 1.74x ”s = Max
= Achieved
2

7 Avg %error = 0.5%

Speedup 15 -

1

0.5

CNN-HDD Blackscholes Swaptions ATMI

CNN-HDD Machine Learning tanh 8,010,000 1.8 0.02% %vundetected images 1.68 702,0.05, 5.6

Blackscholes Financial CNDF 13,107,200 2.48 0.048 RMS Error 2.27 7200, 0.005, 57.6

Swaptions Financial CumNormallnvy 76,800,000 1.33 0.005 RMS Error 1.28 200, 0.005, 1.6




Evaluation (5/6)
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1 Comparison of non-uniform techniques using Blackscholes application

11 Effect of training on speedup and Error

Training vs. Speedup & Error
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Evaluation (6/6)
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11 Effect of number of regions on speedup and error in the uniform scheme

# of Ranges vs. Speedup & Error
3 3
2.9 \
L === Speed
2.8 25 pescup
\ === RMS Error
2.7
-2
2.6 \
Speedup 2.5 1.5
2.4
2.3 - = B
2.2 05
2.1
2 T T T 0
0 200 400 600 800
# of Ranges

Uniform scheme for Blackscholes application



Related Work (1/6)

Numerical Analysis

2

Polynomial Approximation (monomials (1, x, x?, x3, ...), Chebyshev, others)

Splines (cubic splines, others)

Machine Learning

ANN (Artificial Neural Networks), SVMs (Support Vector Machines),
Fitness approximation in Genetic Algorithms

Approximate Computing

Neural network based approach

Approximate memoization (Paraprox)



Related Work (2/6)

Comparison with Numerical Analysis techniques

Polynomial approximation using monomial basis (1, x, x2, x3, ...)

First n+1 inputs

Evenly spaced data points over the entire input range

Chebyshev polynomial approximation

Cublic splines

First n+1 inputs

Evenly spaced intervals



Related Work (3/6)

Speedup

Comparison of Numerical Analysis Techniques on CNN-HDD
Effect of data points on speedup
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Related Work (4/6)

Comparison of Numerical Analysis Techniques on CNN-HDD
Effect of data points on error
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Related Work (5/6)

Comparison with Numerical Analysis techniques on CNN-HDD

application
Comparison of techniques for CNN-HDD
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Related Work (6/6)

Comparison with Numerical Analysis techniques on CNN-HDD

application
Comparison of techniques for CNN-HDD
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Future Work
N

o Support for 2"¢ degree polynomial

1 Support for dynamic online training

1 Automatic code generation and parameter selection
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