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Abstract—Approximating entire procedures in applications
amenable to approximation can offer significant performance
gains. This paper proposes PROCsimate, a function approxima-
tion scheme. PROCsimate provides efficient and fast function
approximation in software, monitors quality of approximation,
and offers guarantees about results. The scheme dynamically
improves approximation over the course of application execu-
tion by capturing changing input behavior of the application
and by speculatively training itself. The scheme improves the
ease of use over existing schemes that require multiple trial-
and-error runs for setting approximation parameters. Instead,
the new method automatically selects these parameters and
tunes them over time to produce acceptable results and honor
guarantees. PROCsimate leverages idle cores in a system
to offload some of the tasks from its critical path. It also
introduces a multilevel hash table to dynamically enrich history
which the scheme uses to build an approximate model of the
candidate function.
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I. INTRODUCTION

Many applications in machine learning, image processing,
computer vision, data analytics, simulations, gaming, audio,
and video do not have strict demands on the exactness of
results. They can tolerate a certain degree of inaccuracy in
results. Approximate computing aims to tradeoff accuracy
in these domains for increased performance and/or reduced
power. Novel hardware [1], [2], [3], software [4], [5],
[6], and hybrid [7], [8] techniques target approximation at
different levels of granularity.

Approximating program procedures can offer significant
performance benefits. Different contributions [9], [10], [11],
[12], [13], [14], [15] have pursued function approximation.
History-based piecewise approximation [16] is the latest
scheme that has been shown to offer fast and efficient
function approximation in software. This scheme employs
polynomial approximation in multiple regions of function
input, which the scheme forms according to the function
invocation history. While the scheme performs well, it does
not monitor quality and offer result guarantees. In order
to get satisfactory results, the user may have to run the
scheme multiple times with different parameters. Moreover,

this tuning process would have to be repeated when the
input to the application changes. The uniform version of the
scheme, which divides the function input range in uniform-
sized regions, provides fast approximation but has additional
limitations. It requires profiling information to determine the
input range of the candidate function. The uniform scheme
stores the region information, training data, and coefficients
of polynomials for each region in a hash table. The size of
each region and number of regions (size of the hash table)
are determined by the user-provided parameters. Once the
scheme has created regions, they stay fixed. This prevents
the scheme from dynamically improving the approximation
by enriching training data and making changes into regions
and their corresponding polynomials.

We introduce PROCsimate, a fast, efficient, self-
improving, self-monitoring and easy-to-use function approx-
imation scheme that offers result guarantees. It employs
history-based uniform piecewise approximation as the un-
derlying approximation strategy. Currently, the scheme uses
polynomials in single variables offering significant perfor-
mance improvements to a number of applications that have
single parameter candidate functions, and it can be extended
to support polynomials in multiple variables. PROCsimate
does not require user-provided parameters except for the
tolerable error bound needed to offer result guarantees. It
automatically selects its parameters and tunes them over the
course of the application execution to produce satisfactory
results within the provided error bound. PROCsimate ob-
viates the need for profiling information or multiple trial-
and-error attempts and is thus easy to use. It can also
handle applications whose inputs change across runs. The
scheme harnesses idle cores to perform some of its tasks. It
dynamically improves the approximation by capturing the
changing input behavior during the application execution
using dynamic online training and by speculative training. It
introduces a custom hash table to support dynamic insertion
and modification of regions, training data, and polynomials,
helping the scheme dynamically improve approximation in
a single run with scheme-selected parameters.

This paper makes the following contributions:

1) A novel procedure approximation scheme, PROCsi-



mate, that monitors quality, offers guarantees about
results, and dynamically improves itself. The scheme
is easy-to-use and does not require extra profiling
phases or multiple trial-and-error attempts to find
proper parameter settings for approximating an appli-
cation efficiently.

2) A multilevel hash-table used by the scheme. This data
structure may be of use for other applications.

The rest of the paper is organized as follows. Sec-
tion II describes the underlying approximation strategy that
PROCsimate employs. Section III describes the PROCsimate
scheme including the mechanisms for dynamically improv-
ing itself, monitoring quality, and offering guarantees. The
section also introduces a customized multilevel hash-table
that allows PROCsimate to enrich the history dynamically
and improve the approximations. Section IV discusses
related work and Section V concludes the paper.

II. BACKGROUND

The history-based piecewise approximation scheme [16]
approximates functions by dividing their input range in
uniform or non-uniform regions, based on invocation his-
tory, and applying lower-order polynomial approximation
in those regions. During training, which happens online,
the scheme stores the input-output pairs in the history,
forms regions, and computes coefficients of polynomials
for regions. During production, for each input, the scheme
finds the appropriate region and evaluates the corresponding
polynomial. The scheme comes in two flavors: the non-
uniform scheme forms regions of different sizes; and the
uniform scheme has equal-sized regions. The non-uniform
scheme is realized with three different underlying storage
and lookup mechanisms: an array (BSA); a binary search
tree (BST); and a red-black tree (RBT). The uniform scheme
is realized via a hash-table. The non-uniform scheme can
provide better approximation than its uniform counterpart
but is slower. The latter scheme requires an extra profiling
run and does not allow dynamic expansion of history or
formation of new regions.

The current history-based piecewise scheme [16] does not
monitor quality and offer result guarantees. It does not im-
prove approximation over time and finding proper parameter
settings for an application requires multiple trial-and-error
attempts. The next section provides novel mechanisms that
overcome these limitations.

III. PROCSIMATE

This section introduces PROCsimate, an approxima-
tion scheme for procedures that is general, efficient, self-
improving, self-monitoring, easy-to-use, and provides result
guarantees. The scheme builds on history-based uniform
piecewise approximation, which is a general and software-
only scheme that has been shown to provide efficient and
fast function approximation.
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The following subsections describe the scheme in detail.

A. Overview of PROCsimate

Figure 1 describes the high-level tasks that PROCsimate
performs. It builds history by storing training inputs and
corresponding exact outputs and prepares approximations by
forming regions, deciding polynomials for regions, and com-
puting coefficients of polynomials. For production inputs, it
chooses and executes approximations by finding the corre-
sponding region and evaluating the associated polynomial. It
monitors the output quality and improves approximations by
updating history, forming new regions and polynomials, and
adjusting existing regions and corresponding polynomials.

Figure 2 shows task details as they are performed by
different threads under PROCsimate. The thread on the left is
the application main thread, which executes the approximate
function provided in replacement of the original function
by PROCsimate. The threads on the right are the auxiliary
threads that the scheme creates. These threads have lower
priorities than the application thread and are expected to
make use of idle CPU cores. For demonstration, the figure
is showing two auxiliary threads, but in practice, the scheme
will have more to harness all available cores. The inputs



for which the scheme invokes the original function in the
application thread are called training inputs and those for
which approximation is performed are called production in-
puts. In the middle column, Figure 2 shows the data that the
scheme keeps. History stores inputs and corresponding exact
outputs, region information, and polynomial information for
each region. Monitoring info contains the bookkeeping and
approximation quality information. It helps the scheme make
certain decisions, described in Section III-D. List S contains
a list of arbitrary inputs determined speculatively. Auxiliary
threads (e.g. thread-2 in Figure 2) remove an input from this
list, call the original function with the input, store it with
the exact result in history, and update the approximation by
adjusting regions and polynomials. List E comprises produc-
tion inputs for which the scheme has recently performed an
approximation in the application thread. Auxiliary threads
(e.g. thread-1 in Figure 2) remove an item from the list,
find the exact output by calling the original function for the
removed input, compare it with the approximated output, and
update the monitoring info, accordingly. They also update
the history and adjust approximations.

The application thread consults the monitoring info and,
if needed, determines the speculative inputs, which it adds
to List S. Speculative training is one of the ways by
which the scheme improves its approximation. Improving
approximations is further explained in Section III-B. The
scheme goes through an observation phase in the beginning.
In this phase, the scheme analyzes the input and tries to find
suitable parameters. These parameters can later be adjusted
by the scheme, as needed. In the observation phase, inputs
are considered training inputs and the original function is
called for them. These inputs and the exact function results
are stored in the history. Based on the monitoring info, the
scheme can also choose to treat an input in the regular
(non-observation) phase as a training input. Otherwise, it
will be considered a production input and approximation
will be performed by locating the corresponding region and
evaluating the associated polynomial against the production
input. The production input is also stored in List E so that
the auxiliary threads may find its exact result and compare
against the approximation. Finally, the scheme updates the
monitoring info in support of the decisions, described in
Section III-D.

B. Improving Approximation

PROCsimate improves approximation over the course of
the application execution. It is done using dynamic training,
speculative training, and comparing approximation results
against the exact results of production inputs. Dynamic
training entails calling the original function for an input
instead of performing approximation. The scheme also em-
ploys speculative training by calling the original function
for selected inputs. Exact outputs and corresponding inputs
are stored in the history. This results in the addition of
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Figure 3. Customized multilevel hash-table. In this example, a bucket is
split into a hash-table with 10 elements.

new regions with new polynomials as well as adjustments
in existing regions and their polynomials. The scheme can
also trigger these changes by updating certain parameters
depending on the monitoring info, as will be explained in
Section III-D.

To support run-time improvement, an approximation
scheme should use a history data structure that allows dy-
namic expansion after it has been created. The conventional
hash-table used by the basic history-based uniform piecewise
scheme does not support formation of new regions or ad-
justments in region sizes. To support dynamic improvement,
PROCsimate introduces a new extensible data structure,
described next.

1) Customized Multilevel Hash-table (CMH): PROCsi-
mate introduces modifications to a conventional hash-table
to support dynamic expansion. The result is a customized
multilevel hash-table (CMH) that allows addition of new
regions of smaller sizes by splitting buckets into new hash-
tables at deeper levels. Figure 3 outlines the proposed CMH.
The first level of CMH is like a regular hash-table. To cover
a larger input range, there are lists of history elements that
hash to each bucket in the first level of the table. Each history
element (interchangeably called a bucket) stores the history
for a particular region whose size depends on the level of
the table that the element resides in. Each region is further
divided into three equal sections (not shown in the figure):
top, middle, and bottom. The first input in each section is
considered a training input. It is stored at the element with its
exact output. After a region has seen three training inputs, it
is considered fully trained. Based on the output variation of
the training inputs and frequency of use, the scheme decides
to freeze or split a bucket. If the output variation is higher
and the bucket is frequently used, the scheme decides to
split it into a new hash-table with smaller region size. It
allows the scheme to have more smaller regions in areas
of the function input range where the output variation is
high, leading to better approximation. Striped buckets in the
CMH of Figure 3, represent the buckets that are split. The
region size of a new table is equal to the region size of



the split bucket divided by the size of the new table. In
Figure 3, a bucket is split into a new hash-table at a deeper
level with 10 buckets. If the output variation for training
inputs is less than a threshold, determined by the scheme
and tuned over time, PROCsimate decides to freeze the
bucket by determining a 0-degree polynomial (constant) as
an output for the region. Black buckets in Figure 3 represent
frozen buckets. Gray buckets in Figure 3 represent regions
that are not fully trained, their output variation is not above
the threshold to warrant a split, or they are less frequently
used. To approximate such regions, the scheme evaluates the
corresponding 2-degree polynomials.

Over the course of the execution, depending on the quality
monitoring and frequency of use, PROCsimate may decide
to unfreeze previously frozen buckets or freeze or split the
gray buckets. If the lists in level-1 of the CMH becomes
long or the number of levels becomes large, the scheme can
decide to create a bigger CMH, rehash the history from old
CMH into the new one, and free the old CMH.

C. Parameter Selection

The history-based uniform piecewise approximation
scheme that PROCsimate employs as underlying approxi-
mation strategy relies on the following parameters: mini-
mum and maximum input values, size of a region, total
number of regions; degree of polynomial, and acceptable
output variation. These parameters can affect the quality
and performance of the approximation. In the base scheme
they are provided by the user who may need to perform
multiple trial-and-error attempts and extra profiling runs to
find proper parameter setting for an application.

PROCsimate, in its attempt to offer an easy-to-use pro-
cedure approximation scheme, does not require the user
to provide these parameters. It rather automatically selects
parameters based on its observation of the input and output
behavior of the function. It tunes them over the course of
the application execution based on the changing behavior
and approximation quality.

D. Quality Monitoring and Decision Making

PROCsimate monitors the quality of its approximation. It
helps the scheme meet guarantees on the accuracy of results
that it offers by improving approximations or suspending
approximation when ineffective. To monitor quality, PROC-
simate uses auxiliary threads that invoke the original func-
tion on inputs that the scheme approximated. By comparing
the exact and approximated results, PROCsimate guides
the performance of the approximation. These decisions,
on a high level, include: choosing between approximation
versus running the original function on current inputs; doing
speculative training or not; policy of determining speculative
training inputs; suspending approximation; whether to split,
freeze, or unfreeze certain buckets; and whether to rehash.
In case of a rehash, the scheme further decides what range

of input it should cover and what table size, region size in
level-1, and number of buckets in each of the deeper-level
tables it should choose.

E. Result Guarantees

PROCsimate offers both hard and soft guarantees about
approximation results. It can guarantee that the average per-
centage error across all invocations of the candidate function
will be within the provided error bound. The user provides
these parameters (maximum allowed percentage error and
whether the user wants hard guarantees or the supplied
error bound should be treated as a hint) via command
line arguments. To offer guarantees, the scheme checks the
approximation results against the exact results using the
auxiliary threads that harness available idle cores. In case of
hard guarantees, the scheme only approximates the function
when it is sure that approximation will not cause the scheme
to violate the guarantee. In situations where the scheme
cannot be certain, for instance, when the auxiliary threads
have pending work and have not been able to find the exact
results for earlier approximations, the scheme conservatively
executes the original exact function. If the user does not
require hard guarantees, the scheme can be more liberal in
applying approximation.

The scheme provides guarantees about the result of func-
tion approximation. The effect of inaccuracies in function
results on the overall execution depends on the application.
Some application outputs can only be judged by a human
user. For others, a tuning system can be developed, which,
for a given error bound on the overall application output,
finds the error bound on the function output.

IV. RELATED WORK

Existing function approximation schemes exhibit a num-
ber of limitations. Approximate memoization techniques [9],
[10], [11] do not employ advanced approximation strategies.
For a given input, they return the closest memoized value
or at best perform interpolation between two memoized
values. The schemes are not dynamic, adaptive, and self-
improving. Additionally, the individual approximate mem-
oization schemes lack other features as well. For instance,
iACT [11] cannot approximate library functions, does not
monitor quality, and requires recompilation of the appli-
cation to allow different parameter settings. Some other
schemes such as [12], [13] can monitor quality and choose
from available approximations but require programmers
to provide alternate approximate functions, quality metric,
and calibration inputs. Requiring programmers’ extensive
involvement and domain expertise, has its advantages in
terms of better approximation in domain-specific settings
but limits the adoption and usefulness of the schemes for
general applications. Machine learning techniques [14], [15]
provide sophisticated approximation strategy, do not rely on
programmers’ involvement, and are general in their nature,



but require specialized hardware to be of any practical use.
History-based piecewise approximation scheme [16] is an
efficient, software-only scheme that targets general appli-
cations but does not improve approximations dynamically,
monitor quality, and offer guarantees. Furthermore, choosing
proper parameter settings for an application requires multiple
trial-and-error attempts and the uniform scheme depends on
the profiling information.

V. CONCLUSION

Approximating side-effect free procedures can offer sig-
nificant performance gains to applications amenable to ap-
proximation in exchange for some tolerable loss of accuracy.
We have introduced PROCsimate, a scheme that approxi-
mates procedures. It is a software-only scheme that provides
fast and efficient function approximation. The scheme dy-
namically improves approximation during the application ex-
ecution, monitors the quality of approximation, and offers re-
sult guarantees. PROCsimate automatically selects and tunes
its parameters and does not require profiling information or
multiple trial-and-error runs by users. It performs dynamic
online training and thus benefits applications whose inputs
change across runs or even during a single run. Currently,
the user has to manually modify an application to insert the
code of PROCsimate. In ongoing work, we are automating
the code generation. We are also extending the scheme to
support polynomials in multiple variables. Lastly, how the
function approximation error affects the overall application
output is application dependent and not addressed in the
current paper. In ongoing work, we are developing a tuning
system that finds error bounds for function approximation
from application error bounds.
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