Reduced precision applicability and trade-offs for SLAM algorithms

Oscar Palomar, Andy Nisbet, John Mawer, Graham Riley, Mikel Lujan
Advanced Processor Technologies (APT)
University of Manchester, UK
Email: oscar.palomar@manchester.ac.uk

Abstract—This paper presents a study of the use of half-
precision (16-bit) floating point for SLAM algorithms, an
emerging computer vision problem. Our experiments show that
a mix of 16-bit and 32-bit floating point data is needed for the
algorithm to function properly, and a library that facilitates
mixing 16- and 32-bit floating point variables is introduced. We
present our initial results for the whole benchmark selected,
showing that 72% of the floating point operations can be
performed on 16-bit data, with limited impact on the accuracy
of the results. Then we study in depth one of the kernels of the
algorithm and the impact of using 16-bit/32-bit floating point
values in different variables used in the kernel.

Keywords-computer vision, slam, reduced precision

1. INTRODUCTION

Computer vision is an increasingly important application
domain, and has very attractive applications for mobile sys-
tems, e.g. augmented reality. But computer vision algorithms
are typically compute intensive and require powerful high-
end hardware. Thus, it is not straightforward to make these
applications suitable for battery-operated devices with a low
power budget, in which we need to balance energy consump-
tion, and performance without sacrificing the quality of the
output.

An emerging computer vision problem is Simultaneous
Localisation and Mapping, or SLAM. SLAM algorithms
create a 3D map of the surroundings from video captured
with a moving camera, and estimate the position and ori-
entation of the camera (the pose) within the map. There
are abundant applications of SLAM, in robotics, drones,
augmented reality, etc. This is a very active research area
and several SLAM algorithms have been proposed recently:
KinnectFusion [2], ORB-SLAM [4], [5], ElasticFusion [3]
and LSD-SLAM [6]. There are several significant variants
of SLAM: they can be dense or sparse, depending on how
they represent the reconstructed 3D scene. Dense variants
keep a three-dimensional array, with one entry per voxel.
The memory used by the structure depends on how large
the scene is and the voxel size, which also affects the
accuracy and quality of the output. Sparse representations
keep information only for the parts of the space that are
not empty. SLAM may also vary with respect to the sensors
used: some algorithms (stereo) use the differences between
two cameras to determine the distances, while others (RGB-
D) have a single RGB camera coupled with a depth camera,

such as the one present in Microsoft’s Kinnect.

SLAM applications provide excellent opportunities for
applying approximate computing techniques. They have
several characteristics that make them attractive for this
purpose:

« It may not be necessary to process all frames in full
detail. Typically, the delta between consecutive frames
is small, thus the information provided by each one of
them is small. The exception would be if the camera
movement is very abrupt, but that would most probably
make the algorithm fail. Also, some SLAM algorithms
(e.g. ORB-SLAM) select a subset of frames (called
keyframes) that are kept separately and receive further
processing. These keyframes are considered to provide
a significant amount of information with respect to
other keyframes. There is clearly an opportunity to
perform the computation of non-key frames in an
approximate fashion.

o The input is a video stream; thus, the algorithms
typically need to account for noise and other sources
of inaccuracy (e.g. the depth camera is not always able
to return the depth, it depends on the light conditions
and the materials of the surroundings).

o SLAM algorithms have several parameters that affect
the accuracy of the result. For example, the resolu-
tion (voxel size) of the reconstructed 3D map. Thus,
it already includes accuracy vs. performance/memory
usage/energy trade-offs.

« Using a synthetic input, such as the popular ICL-NUIM
dataset [7], we can precisely measure how much the
computed trajectory deviates from the actual trajectory.
The Absolute Trajectory Error (ATE) indicates the
difference between the known ground truth and the
estimated trajectory. Therefore, we have a metric that
can be used directly to evaluate the impact of the
approximate computing techniques being applied, e.g.
reduced precision.

We consider the use of reduced precision, a very promis-
ing approach for SLAM. Using narrower data (e.g. 16-
bit floating point) we can significantly reduce the memory
footprint and reduce the energy spent in both moving floating
point values and in floating point unit. In this paper, we use
SLAMBench [1] to study the use of reduced precision for

SLAM. In its current release, SLAMBench implements the
Kinnect Fusion algorithm. We chose SLAMBench because
it represents an important class of SLAM (dense and based
on depth cameras). Moreover, it has well structured C++
code, parametrised and with a clean division into kernels.
Moreover, it provides a framework for easily capturing
performance, power and accuracy (e.g. it provides a tool to
measure ATE from the log file that SLAMBench generates).
Such features have been exploited for studying design space
exploration [8].

This paper contributes an initial study of the use of 16-
bit floating point variables in SLAMBench, including an
analysis of its impact on the accuracy of the trajectory; it
also presents a more detailed description and evaluation of
one of the most relevant kernels of SLAMBench; finally, it
describes a library that enables experimenting with the use
of reduced precision mixed with standard 32/64-bit values.
Although previous work has shown the potential of reducing
the precision for several applications [9], [10], [11], to the
best of our knowledge there is no published work presenting
an analysis on the applicability of reduced precision to
SLAM.

II. SLAMBENCH

SLAMBench [1] is a publicly available software frame-
work that enables researchers to study trade-offs in perfor-
mance, energy and accuracy of dense RGB-D SLAM sys-
tems. The code provides implementations in C++, CUDA,
OpenMP and OpenCL. By sharing the framework and parts
of the code amongst all these implementations, SLAMBench
facilitates fair comparison of a wide variety of systems with
significantly different power and performance characteris-
tics.

SLAMBench implements the KinnectFusion
algorithm [2], which has been cleanly divided into
multiple kernels. The algorithm has the following phases,
shown in Figure 1:

1) acquire provides the next RGB-D frame. In our exper-
iments, this means reading one frame at a time from
the input file containing the video sequence.

2) preprocess transforms the depth information to meters,
and applies a filter to the image to reduce noise.

3) track is composed of several kernels. This phase
estimates the pose for the new frame by generating a
point cloud from the frame and then correlating it with
the existing 3D map of the environment. The frame’s
pixels are transformed into 3D points (forming the
point cloud); a kernel computes the distance between
points in the new point cloud and in the reconstructed
3D map; all distances are reduced and a finally singu-
lar value decomposition is used to solve the system,
producing the new pose.

4) integrate merges the information from the new point
cloud, created by track, into the existing map. This

}

Input—»|Preprocess|» Track [»| Integrate —» Raycast [Rendering

t |

Figure 1. SLAMBench phases

must be skipped if tracking was not successful. This
kernel is described in much more detail in Sec-
tion IV-B.

5) raycast recovers the 3D surfaces from the volume for
the current pose.

6) rendering uses the outcome of raycast to generate an
image to visualise the depth information, the result of
tracking and the reconstructed volume.

III. FLEXIBLEPOINT LIBRARY

We developed a C++ library for a flexible floating point
representation in which each variable can use 16 or 32
bits. A variable can change its representation (width) at
run time, from 16 to 32 bits and vice versa. There is a
change in the representation in two cases: 1) the programmer
may set explicitly the width of a variable, 2) a 32-bit (or
16) variable is written with the output of an arithmetic
operation that produced a 16-bit (32) value. Operations on
two variables of the same size generate an output of the same
size (i.e. operating on two 16-bit operands results in one 16-
bit value, while two 32-bit values generate a 32-bit value).
For operations with mixed widths, the current behaviour is to
promote the output to 32 bits. However, the logic to decide
that is isolated in a function to make it easy to change. The
default width is configurable, and it can be changed at run
time (e.g. for certain regions of code). The default width
is used for new variables, or when casting from other data
types.

All necessary operators are overloaded, so simply chang-
ing the variable type from float to our own flexpoint
type makes the application code automatically use the
correct methods. As a consequence, the majority of the
application was successfully converted to flexpoint with
minor modifications to the code. This was facilitated by
the use of explicit conversion operators. However, there
were a few exceptions. For example. we had to implement
flexpoint wrappers for a few library calls (e.g. sin, abs,
cos), that have floats as input. The compiler was not able
to cast from flexpoint automatically in these cases.

We added support to compute statistics of the usage of
each width. For each arithmetic operation, we count if the
16-bit or the 32-bit representation was used. We can also
capture the range of the data stored in the flexpoint
variables. Finally, we implemented support for dumping the
statistics and to pause/resume counting. This last feature
enables us to produce statistics only for a given part of the

code. In our case, we use this to analyse a specific kernel
of SLAMBench in Section IV-B.

Currently, the library assumes that there is hardware
support for 16-bit floating point variables (e.g. ARM, via
the _ fpl6 data type offered in gcc). The code could be
changed to use another representation rather than ___fplo6,
to avoid relying on hardware support (or slow dynamic
binary translation). One current limitation of gcc’s support
for half precision variables is that they cannot be function
parameters or return values. However, it accepts them as part
of a union or struct. This has complicated slightly the code
to implement the library.

SLAMBench makes heavy use of the TooN library!,
which implements support for vectors and matrices, includ-
ing sophisticated operations on these structures (e.g. singular
value decomposition). The library is completely templatised
and relies on std: :numeric_limits to determine the
implementation of the operations. We had to provide the
std::numeric_limits for the _ fpl6 data type.

IV. RESULTS
A. Full benchmark analysis

This section focuses on the behaviour of the benchmark
as a whole. Table I presents the ATE statistics for a few
configurations we tested (results are in meters), using trajec-
tory 2 of the ICL-NUIM living room dataset. A preliminary
test showed that there is no practical distinction in accuracy
between using float or double data types, as we expected.
Then, as a first experiment with the FlexiblePoint library
we used 16 bits for all variables. The reason was to test an
extreme case, in which there is no need for combining 16-
and 32-bit types in a flexible way. But this configuration
makes the algorithm fail: it is unable to successfully track
any frames.

This initial result indicates that at least a few variables of
the application require using 32-bit floating point. Our next
step was to make 16-bit the default width, and selectively
identify these key variables and make them use 32 bits.
Using a combination of traces, dumped variables (the recon-
structed 3D space) and the debugger to compare against a
32-bit only “gold standard”, we attempted to identify which
parts of the code went wrong in the 16-bit version, and
thus the variables that caused the problem. Although we
were able to observe some interesting cases (e.g. subtracted
matrices resulting in many 0’s rather than in small values,
because different values in 32 bits become the same in 16),
this approach was not particularly successful, and we still
did not manage to make the application track the frames.

For this reason, we changed this approach to the com-
pletely opposite one: make 32 bits the default data width, and
selectively make variables narrower. This has the obvious
advantage of having an initial version that works correctly,

Uhttp://www.edwardrosten.com/cvd/toon/htm]-user/

configuration | ATE Max | Mean | Total

FP64 0.049 | 0.020 | 18.051

FP32 0.049 | 0.020 | 18.067

MIXED (72% FP16) 0.452 | 0.062 | 54.513
Table I

ATE RESULTS

that can be iteratively refined to increase the use of 16-bit
floating point. If changing a variable to 16 bits stops the
program tracking, or impacts the accuracy too severely, it is
straightforward to revert the effect, since we know already
which variable is responsible for the behaviour.

This has proven a very fruitful path. We incrementally
refined the most time-consuming kernels to increase the
use of 16-bit floating point. As a result, currently 72% of
floating point operations of the whole kernel have 16-bit
floating point variables in all their input operands, while the
algorithm is still able to track (most of the frames). This
obviously has an impact in accuracy, as shown in Table I.
We can see that the average ATE increases from 2cm to
6cm, which is still acceptable. However, the maximum and
total ATE (accumulated for all frames) have more worrying
values.

To understand what happens, we plot the ATE per frame
in Figure 2. There is a noticeable spike in the ATE between
frames 647 and 684. In these frames (but only in these), the
algorithm is not able to track the movement of the camera
from the video stream. As a consequence, the estimated pose
remains unaltered in those frames, increasingly deviating
from the actual pose. Finally, this is corrected suddenly
when the algorithm is able to track again, calculating a
new pose for frames 685 and later. Interestingly, although
it is still able to track, ATE for later frames is noticeably
higher than for the first part of the video sequence. A
possible explanation to this behaviour is that in frame 685
the algorithm is effectively able to find the current position
of the camera, but the orientation (not considered in the ATE
metric) might be not completely correct. This may result in
integrating erroneous information into the volume, which
would affect negatively the behaviour of coming frames.
A careful examination of the accuracy of the reconstructed
volumes will be part of our future work.

The next section discusses in detail one of the kernels of
SLAMBench in which we reach a significant percentage of
16-bit floating point operations, but that requires some of its
variables to be 32-bit floating point.

B. The Integrate Kernel

The study of the overall benchmark directed our attention
to the integrate kernel. As explained in Section II, this kernel
integrates the new point cloud generated by previous kernels
into the 3D volume that has been constructed from previous
frames. Unless otherwise stated, the rest of the kernels of

0.5

0.45

0.4 —— MIXED-FP

——FP32

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

VPRSI PPEFILIP PP PP LD PP LI P I EEI PP L PP PRI PP ETLEP ST LS PSS

Figure 2. ATE per frame

the benchmark use 32-bit floating point variables. That said,
if integrate writes to a variable and sets it into the 16-bit for-
mat, this may remain unmodified by other kernels, resulting
in limited use of 16-bit computation outside integrate.

Figure 3 lists the source code for this kernel. Its inputs are
the volume that represents the reconstructed 3D scene, an
array of the depth assigned to each pixel of the image, the
(inverted) pose of the camera and several parameters (camera
intrinsics, mu and max weight). The output of the kernel is
the updated volume data structure. Kinnect Fusion stores
the 3D reconstructed volume with a voxel grid. A truncated
signed distance function (TSDF) is used to represent 3D
surfaces: these are found at zero crossings of the function.
The kernel iterates over the volume. Then it uses the camera
pose to match voxels with the depth array, and after filtering
unusable pixels, the volume is updated. The complete details
of the algorithm are described in [2].

We performed an experiment in which integrate uses 32-
bit floating point exclusively, while other kernels use 16-bit
selectively, just like in the whole benchmark experiments
shown in the previous section. The algorithm works cor-
rectly, being able to track all frames. As a consequence,
the percentage of 16-bit floating point usage for the whole
benchmark is quite low (around 45%). Please note that, in
addition to the direct usage of 32-bit in integrate, values
written in the volume by integrate use 32 bits, and are used
unmodified by other kernels, and that the default data width
for the whole kernel is still 32: other kernels use 16-bit
widths only where explicitly indicated. Changing the default
width to 16 bits makes the algorithm unable to track.

A careful study of integrate showed that the data structure
storing the camera pose (cameraX in Figure 3) is sensitive
to the floating point representation used. It is a structure
of three floating point values (one for each 3D axes). This
variable must use 32-bit floating point data, else the algo-

rithm easily gets lost. Using 16-bit floating point variables
in the rest of the kernel works fine as long as cameraX
uses 32-bit.

Once we identified cameraX as a variable that required
32 bits, we went back to use 16 bits as default width for
the whole benchmark and change the width to 32 only for
that variable. The goal was to determine if this is the only
variable that needs 32 bits. This is not the case, since the
algorithm is unable to track when using this configuration.

cameraX has three components, and we wanted to un-
derstand if all three have to use 32 bits. To this end, we ran
the benchmark forcing only one of the components of the
variable to use 32 bits (the Z axis). A first look at the results
is encouraging (see Table II): the benchmark is able to track
most of the time (only 41 frames out of 880 are not tracked),
but this may be misleading: the average ATE is in the order
of dm rather than cm. Moreover, the untracked frames are all
found at the end of the sequence. It is possible that a longer
sequence would yield worse results. In this experiment, the
percentage of 16-bit floating point usage (for integrate alone)
rises from 59% to 72%.

Since the interface of integrate and the rest of the kernels
is via the volume, we also wanted to see if forcing the
members of vol that are written to use 32-bit floating point
has any effect, while keeping the rest of the benchmark at
16-bit. When forcing cameraX and vol to use 32 bits, the
benchmark reports that it is able to track. Finally, if we use
32 bits for vol but 16 for cameraX, the behaviour is quite
erratic, with the algorithm being able to track a few frames,
losing that later, recovering from that, etc.

We captured the ranges of the data stored in the cameraX
variable, together with cameraDelta (which is used to
update cameraX) and the vol variable. Table III lists the
results.

void integrateKernel (Volume vol,

const floatx depth,

uint2 depthSize,

const Matrix4 invTrack, const Matrix4 K, const float mu, const float maxweight) {

float3 delta = rotate (invTrack,

make_float3 (0, O,

vol.dim.z / vol.size.z));

const float3 cameraDelta = rotate (K, delta);

unsigned int y;

for (y = 0; y < vol.size.y; y++) {
for (unsigned
uint3 pix = make_uint3(x, y, 0);

float3 cameraX = K * pos;
for (pix.z = 0; pix.z < vol.size.z;
++pix.z, pos += delta,

cameraX +=
if (pos.z < 0.0001f) continue; //

int x = 0; x < vol.size.x; x++) {
//pix.x = x;pix.y = Yy;
float3 pos = invTrack * vol.pos(pix);

cameraDelta) {
some near plane constraint

const float2 pixel = make_float2 (cameraX.x / cameraX.z + 0.5f,

cameraX .y / cameraX.z + 0.5f);
if (pixel.x < 0 |]

pixel.x > depthSize.x — 1 |]

pixel.y < 0

|| pixel.y > depthSize.y — 1) continue;

const uint2 px = make_uint2(pixel.x,
if (depth[px.x + px.y * depthSize.x]

continue ;
const float diff =

pixel.y);
== 0)

(depth[px.x + px.y * depthSize.x] — cameraX.z)

* std ::
if (diff > —mu) {

const float sdf = fminf(1.f,

float2 data = vol[pix];

sqrt(l + sq(pos.x / pos.z) + sq(pos.y / pos.z));
diff / mu);

clamp ((data.y * data.x + sdf) / (data.y + 1), —1.f,

Source code of the Integrate Kernel

data.x =

1.f);
data.y = fminf(data.y + 1, maxweight);
vol.set(pix, data);

Figure 3.
configuration | ATE Max | Mean | Total | Untracked
FP16 3.505 | 1.904 | 1675.151 708
VOL-FP32 3.101 1.397 1229.031 385
CAM-Z-FP32 0.712 | 0.346 304.317 41
CAM-FP32 0.057 | 0.026 23.164 0
CAM-VOL-FP32 0.056 | 0.026 23.175 0
FP32 0.049 | 0.020 18.067 0

Table II
ATE RESULTS FOR SEVERAL CONFIGURATIONS OF THE INTEGRATE
KERNEL. THE REST OF THE BENCHMARK USES 32-BIT VARIABLES.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented initial results that show the
potential of using reduced precision in SLAM algorithms.

variable | Min Max | Smallest + | Smallest -
camDelta -5.417 3.012 | 1.296e-05 -1.0346e-04
cameraX -900.791 1433.330 | 9.313e-10 -3.929¢-10
vol -32736.008 | 32752.000 | 1.249e-01 -2.499¢-01
Table IIT
RANGE OF VALUES FOR THE SEVERAL VARIABLES IN THE INTEGRATE
KERNEL.

We showed that 72% of the floating point operations could
use 16-bit floating point values while still providing ac-
ceptable accuracy. However, the algorithm requires using
conventional 32-bit floating point variables in parts of the

code. We introduced a library that provides flexible support
for mixing 16- and 32-bit floating point variables and
changing the representation dynamically.

We plan to focus on the following items as future work:

o Performance and power evaluation: We will complete
the study presented above with measurement/estimation
of the performance and power savings achieved by
using reduced precision. We will consider using several
hardware implementations that support half precision:
ARM CPUs, CUDA GPUs or FPGAs.

e Automatic width tuning: The FlexiblePoint library pro-
vides mechanisms to set up individual widths for each
variable, and to change that dynamically. SLAMBench,
when used with an input with a known ground truth,
provides a means to measure how well it is doing,
the ATE metric. In the experiments presented in this
paper, we manually add the library calls to change the
widths of the variables and then we observe the impact
on the results, in a trial and error fashion. We have
not exhausted all the possibilities of the incremental,
iterative process to set more variables to use 16-bit
floating point. We see a lot of potential in automating
this process and performing computer-led design space
exploration (DSE) of the widths of the floating point
variables.

o Dynamic tuning: In this paper sometimes we dynami-
cally set the widths of the variables in different kernels.
We have not explored yet the possibility of changing
the width according to the progress of the algorithm.
For example, we could resort to 32 bits everywhere if
we are not able to track successfully.

o Additional formats: The FlexiblePoint library currently
supports 32-bit and 16-bit floating point types, but it
could be easily changed to use different data types.
We will consider replacing floating point variables with
fixed point representation, where the analysis of the
ranges indicate that it is worth doing so.

o Other SLAM implementations: We will extend the anal-
ysis presented here with studies of alternative SLAM
algorithms with significantly different characteristics
(e.g. that use a sparse representation and/or stereo
cameras).

ACKNOWLEDGMENT

We acknowledge funding by the EPSRC grant PAMELA
EP/K008730/1. Palomar is funded by a Royal Society New-
ton International Fellowship. Lujin is funded by a Royal
Society University Research Fellowship.

REFERENCES

[1] Introducing SLAMBench, a performance and accuracy bench-
marking methodology for SLAM, L. Nardi, B, Bodin, Z.
Zeeshan, J. Mawer, A. Nisbet, P. Kelly, A. Davison, M. Lujén,
M. O’Boyle, G. Riley, N. Topham and S. Furber. In IEEE

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

International Conference on Robotics and Automation(ICRA),
2015.

KinectFusion: Real-time dense surface mapping and tracking,
R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D.
Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges and A.
Fitzgibbon. In 10th IEEE international Symposium on Mixed
and augmented reality (ISMAR),2011.

ElasticFusion: Dense SLAM Without A Pose Graph, T. Whe-
lan, S. Leutenegger, R.F. Salas-Moreno, B. Glocker and A. J.
Davison. In Robotics: Science and Systems (RSS), 2015.

ORB-SLAM: A Versatile and Accurate Monocular SLAM
System. R. Mur-Artal, J. M. M. Montiel and J. D. Tards. IEEE
Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

ORB-SLAM2: an Open-Source SLAM System for Monocular,
Stereo and RGB-D Cameras, R. Mur-Artal and J. D. Tardos.
ArXiv preprint arXiv:1610.06475.

LSD-SLAM: Large-Scale Direct Monocular SLAM, J. Engel
and T. Schops and D. Cremers. In European Conference on
Computer Vision (ECCV), 2014.

A Benchmark for RGB-D Visual Odometry, 3D Reconstruction
and SLAM, A. Handa, T. Whelan, J. McDonald and A.
Davison. In IEEE International Conference on Robotics and
Automation (ICRA), 2014.

Integrating algorithmic parameters into benchmarking and de-
sign space exploration in dense 3D scene understanding, B.
Bodin, L. Nardi, Z. Zeeshan, H. Wagstaff, G. S. Shenoy,
M. Emani, J. Mawer, C. Kotselidis, A. Nisbet, M. Lujan, B.
Franke, P. H. J. Kelly, and M. OBoyle. In International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT), 2016.

EnerJ: Approximate data types for safe and general low-power
computation, A. Sampson, W. Dietl, E. Fortuna, D. Gnanapra-
gasam, L. Ceze and D. Grossman. In ACM SIGPLAN Notices,
vol. 46, no. 6, pp. 164-174, 2011.

[10] Reducing power by optimizing the necessary precision/range

of floating-point arithmetic, J. Y. F. Tong, D. Nagle and R. A.
Rutenbar. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 8 no. 3 pp. 273-286, 2000.

[11] The use of imprecise processing to improve accuracy in

weather & climate prediction, P. D. Diiben, H. McNamara and
T. N. Palmer. Journal of Computational Physics, vol. 271, pp.
2-18, 2014.

