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Deep Learning: Where Time Goes?
Time: ~60% - 90% -2 inner products

®

1000s N 1

®

Convolutional Neural Networks: e.g., Image Classification

100s .
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SIMD: Exploit Computation Stucture

15

15

DaDianNao
4K terms/cycle

X16
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Improve by Exploiting Value Properties

Maintaining:

Massive Parallelism
SIMD Lanes
Wide Memory Accesses
No Modifications to the Networks

L —




Longer Term Goal

One Architecture to Rule them All







Value Properties to Exploit
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Our Results: Performance

Accuracy
3 m100% m99%

0 TARTAN +
CNVLUTIN STRIPES PRAGMATIC
ISCA'16 MICRQO’16 arxiv

vs. DaDianNao which was ~300x over GPUs I



Our Results: Memory Footprint and Bandwidth

®* Proteus:
44% less memory bandwidth + footprint
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Cnvlutin: ISCA’16

®_

1O |

®

Many ineffectual multiplications
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Many Activations and Weights

are Intrinsically Ineffectual (zero)

0.6

45% of Runtime Values are zero
% Stable for any Input

None always zero

® None that are always zero Not pursued In this work
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Many ineffectual multiplications
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Many MoOre ineffectual multiplications
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Beating Fast and
“Dumb” SIMD is Hard

On-the-flylineffectual product elimination
Performance + energy
Optional: accuracy loss +performance



NO Accuracy Loss
+52% performance

-% power

+35% area

Can relax the ineffectual criterion
better performance: 60%
even more w/ some accuracy loss



Deep Learning: Convolutional Neural Networks
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Naive Solution: No Wide Memory Accesses

® 16 independent narrow activation streams

%ﬁ Lane 15

Lane O
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Removing Zeroes: At the output of each layer
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Speedup

better
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Cnvlutin: No Accuracy Loss

mmm CNV

alex

CNV + Pruning
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Loosening the Ineffectual Neuron Criterion
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Open Questions:
Are these robust? How to find the best? 26



Another Property of CNNSs

16 bits

Operand Precision Required Fixed?
16 bits?
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CNNs: Precision Requirements Var

Operand Precision Required Fhxed-Varies
5 bits to 13 bits

28



Stripes

D bits

Execution Time=16/P
Peformance + Energy Efficiency + Accuracy Knob =



Stripes: Key Concept

2 2X2b
Terms/Step 2 1x2b 4 1x2b

MSB

J

LSB

o o ||l= O

:bi
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T |

® Devil in the Details: Carefully chose what to serialize and
what to reuse - same input wires as baseline
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SIMD: Exploit Computation Stucture

DaDianNao
— 4K terms/cycle
[0 —®
15—
uE x16
0}

15—
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Stripes Bit-Serial Engine
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Compensating for Bit-Serial’s Compute Bandwidth Loss

synapses
neurons / p -

*
.0
*
*

-16
neurons

® Each Tile:
® 16 Windows Concurrently — 16 neurons each
® 16 Filters
® 16 partial output neurons s



NO Accuracy Loss

+192% performance

-27% energy
+32% area

More performance w/ accuracy loss

* W/O Older: LeNet + Covnet



Stripes: Performance Boost

I STR

better

lenet

[ Ideal
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Fully-Connected Layers?

synapses
neurons / p -

*
.0
*
*

-16
neurons

® Each Tile:
® No Weight Reuse
® Cannot Have 16 Windows
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Fully-Connected Layers

synapses
Input neurons

® No Weight Reuse
® Cannot Have 16 Windows

Output
neurons

auats

......
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TARTAN: Accelerating Fully-Connected Layers

®* Bit-Parallel Engine

® \/: activation

® | weight
® Both 2 bits Vior V1
OR
> >
— | — o
» X +
B > N

11
io (a)
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Bit-Parallel Engine: Processing one Activation x Weight

® Cycle 1.
® Activation: al and Weight: W

d1/0 di/1
OR
Ea —
— —™ o
» X +
Bl I_: M

W1
Wio (b)
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Bit-Parallel Engine: Processing Another Pair

® Cycle 2:
® Activation: a2 and Weight: W

d2/0 d2/1
OR

wlrv']r#
3!

Y ¥

W1
Wfﬂ [E]

®alx W+ a2x W over two cycles
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TARTAN engine

® 2 x 1b activation inputs
® 2b or 2 x 1b weight inputs

[«] activations

A BR OR AF BR OF
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welights
[
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TARTAN: Convolutional Layer Processing

® Cycle 1: load 2b weight into BRs

AR ER OR AR ER OR
— il - Wl
3 " 3 "
w0 w0
= = N
Wil |
w0
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TARTAN: Weight x 18t bit of Two Activations

® Cycle 2: Multiply W with bit 1 of activations al and a2

alfo

43



TARTAN: Weight x 29 bit of Two Activations

® Cycle 3: multiply W with 29 bit of al and a2
® Load new W’ into BR

AR EE R AR BR OF

3+ +
H l-._lI.E. M l:ll-ll:l

® 3-stage pipeline to do 2: 2b activation x 2b weight
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TARTAN: Fully-Connected Layers: Loading Weights

® What is different? Weights cannot be reused

® Cycle 1: Load first bit of two weights into Ars

O AR HA OR

Bit 1 of Two Different Weights
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TARTAN: Fully-Connected Layers: Loading Weights

® Cycle 2: Load 2" bit of wl and w2 into ARs

CF = BR OR

® Bit 2 of Two Different Weights

®* Loaded Different Weights to Each Unit
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TARTAN: Fully-Connected Layers: Processing Activations

® Cycle 3: Move AR Into BR and proceed as before over
two cycles

OR 1 OF

'I'I-IIJI.-

b L -IIJII-.

® b-stage pipeline to do:
® TWO of (2b activation x 2b weight)

47



TARTAN: Result Summary

® Bit-Serial TARTAN

® 2 04x faster than DaDiannao

® 1.25x more energy efficient at the same frequency

® 1.5x area overhead

® 2-bit at-a-time TARTAN
® 1.6x faster over DaDiannao

® Roughly same energy efficiency

® 1.25x area overhead
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Bit-Pragmatic Engine

Operand Information Content Varies
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Inner-Products

®* Wantto A X B
® Let’s look at A

Bit-Parallel Hardware Precision
' Required

prefix ___precision _sufiix B
1[{041/0|1 X

W

Essential bits
(1,-1,-3)

® Which bits really matter?
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Zero Bit Content: 16-bit fixed-point

B FRe-p16 I FRA-rad

fill I SR
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® Only 8% of bits are non-zero once precision Is reduced
® 1506-10% otherwise
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Zero Bit Content: 8-bit Quantized (Tensorflow-like)
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® Only 27% of bits are non-zero
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Pragmatic Concept: Use Shift-and-Add
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(a) Bit-Parallel Unit (b) Pragmatic Unit

® Simply Modify Stripes?

® Too Large + Cross Lane Synchronization
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Bit-Parallel Engine

[0

15 7 O
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Pragmatic: Naive STRIPES extension? Problem #1: Too Large

1 1
0 // 248 //
1
15 | }/ 255 | //
16 32 32
BIG | |mmn
16 32 = 32
15 == 7
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Solution to #17? 2-Stage Shifting

® Process in groups of Max N Difference

®* Examplewith N =4
1
0/1/0/0/0|0J0 [0 —-

| 1
0/0]0|10|0(1]1 [ 15 -7~

OK

16 20
15 f—G)—4

® Some opportunity loss, much lower area overhead

57

® Can <kin arotins of all zeroec



Solution to #17? 2-Stage Shifting

® Process in groups of Max N Difference

®* Examplewith N =4
1
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® Some opportunity loss, much lower area overhead
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Lane Synchronization

Different # of 1 bits
® Lanes go out of sync

® May have to fetch up to 256 different activations from
NM

® Keep Lanes Synchronized:

® No cost: All lanes

® Extra register per column: some cost better performance
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NO Accuracy Loss

+310% performance

- 48% Energy
+ 45% Area

Better w/ 8-bit Quantized
Nets




Processing Only The Essential Information

= Stripes 8b == Pragmatic
4.5
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® 8-bit Quantized Representation o



Bit-Pragmatic

® Better encoding is possible and improves performance
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® Operand Precision Required Varies

Proteus: Store in reduced precision in memory
Less Bandwidth, Less Energy
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Conventional Format: Base Precision

DO Block 3
CO Block 2
B0 Block 1
AO Block 0

D1
C1
B1
A1
\4

®

Dsss
Coss
Byss
A25J
:

Data Physically aligns with Unit Inputs




Conventional Format: Base Precision
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Need Shuffling Network to Route Synapses
4K Iinput bits = Any 4K output bit position



Proteus’ Key Idea: Pack Along Data Lane Columns
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Local Shufflers: 16b input 16b output
Much simpler
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44% less memory
bandwidth



WhatsNext
® Training
® Prototype

®*Design Space: lower-end confs

® Unified Architecture
®*Dispatcher + Compute

*Other Workloads: Comp. Photo
® General Purpose Compute Class




Our Results: Performance

Accuracy
3 m100% m99%
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vs. DaDianNao which is ~300x over GPUs .



A Value-Based Approach to Acceleration

® More properties to discover and exploit

® E.9., Filters do overlap significantly

® CNNs one class

® Other networks
® Use the same layers

® Relative importance different

®* Training
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