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Time: ~ 60% - 90%  inner products

Deep Learning: Where Time Goes?
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Convolutional Neural Networks: e.g., Image Classification



4

100s

-

1000s

X

X

+

X

X

+

X

X

+
X

X

+
X

X

+
X

X

+

Time: ~ 60% - 90%  inner products

Deep Learning: Where Time Goes?



SIMD: Exploit Computation Stucture
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Our Approach
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Improve by Exploiting Value Properties

Maintaining:

Massive Parallelism

SIMD Lanes

Wide Memory Accesses

No Modifications to the Networks



Longer Term Goal
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Value Properties to Exploit?
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Value Properties to Exploit
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Our Results: Performance
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PRAGMATIC

TARTAN +

vs. DaDianNao which was ~300x over GPUs
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• Proteus:

44%  less memory bandwidth + footprint

Our Results: Memory Footprint and Bandwidth
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Many ineffectual multiplications

Cnvlutin: ISCA’16
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• Zero Activations:

• Runtime calculated

• None that are always zero

Many Activations and Weights

are Intrinsically Ineffectual (zero)
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Zero Weights:

Known in Advance

Not pursued in this work

45% of Runtime Values are zero

% Stable for any Input

None always zero



Many ineffectual multiplications

Cnvlutin
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Many more ineffectual multiplications

Cnvlutin
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Cnvlutin
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Beating Fast and 

“Dumb” SIMD is Hard

On-the-fly ineffectual product elimination

Performance + energy 

Optional: accuracy loss +performance



Cnvlutin

No Accuracy Loss

+52% performance

-7% power

+5% area

Can relax the ineffectual criterion

better performance: 60%

even more w/ some accuracy loss



Deep Learning:  Convolutional Neural Networks
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• 16 independent narrow activation streams

Naïve Solution: No Wide Memory Accesses
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Lane 15

Lane 0



Removing Zeroes: At the output of each layer
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Cnvlutin: No Accuracy Loss
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• Treat 

Neurons 

close to zero 

as zero

Loosening the Ineffectual Neuron Criterion
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Open Questions: 

Are these robust? How to find the best?



Another Property of CNNs
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Operand Precision Required Fixed?

16 bits?

16 bits



CNNs: Precision Requirements Vary
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Operand Precision Required Fixed Varies

5 bits to 13 bits 

16 bits

p bits



Stripes
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Execution Time = 16 / P
Peformance + Energy Efficiency + Accuracy Knob 

p bits



• Devil in the Details: Carefully chose what to serialize and 

what to reuse  same input wires as baseline

Stripes: Key Concept
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2 2x2b 

Terms/Step
2 1x2b 4 1x2b



SIMD: Exploit Computation Stucture
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Stripes Bit-Serial Engine
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• Each Tile:

• 16 Windows Concurrently – 16 neurons each 

• 16 Filters

• 16 partial output neurons

Compensating for Bit-Serial’s Compute Bandwidth Loss
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Stripes

No Accuracy Loss

+192% performance

-57% energy

+32% area

More performance w/ accuracy loss

*

* W/O Older: LeNet + Covnet



Stripes: Performance Boost
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• Each Tile:

• No Weight Reuse

• Cannot Have 16 Windows

Fully-Connected Layers?
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• No Weight Reuse

• Cannot Have 16 Windows

Fully-Connected Layers
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Input neurons Output

neurons

synapses



• Bit-Parallel Engine

• V: activation

• I: weight

• Both 2 bits

TARTAN: Accelerating Fully-Connected Layers
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• Cycle 1:

• Activation: a1 and Weight: W

Bit-Parallel Engine: Processing one Activation x Weight
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• Cycle 2:

• Activation: a2 and Weight: W

• a1 x W + a2 x W over two cycles

Bit-Parallel Engine: Processing Another Pair
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• 2 x 1b activation inputs

• 2b or 2 x 1b weight inputs

TARTAN engine
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• Cycle 1: load 2b weight into BRs

TARTAN: Convolutional Layer Processing
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• Cycle 2: Multiply W with bit 1 of activations a1 and a2

TARTAN: Weight x 1st bit of  Two Activations
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• Cycle 3: multiply W with 2nd bit of a1 and a2

• Load new W’ into BR

• 3-stage pipeline to do 2: 2b activation x 2b weight

TARTAN: Weight x 2nd bit of  Two Activations
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• What is different? Weights cannot be reused

• Cycle 1: Load first bit of two weights into Ars

TARTAN: Fully-Connected Layers: Loading Weights
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Bit 1 of Two Different Weights



• Cycle 2: Load 2nd bit of w1 and w2 into ARs

• Bit 2 of Two Different Weights

• Loaded Different Weights to Each Unit

TARTAN: Fully-Connected Layers: Loading Weights
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• Cycle 3: Move AR into BR and proceed as before over 

two cycles 

• 5-stage pipeline to do:

• TWO of (2b activation x 2b weight)

TARTAN: Fully-Connected Layers: Processing Activations
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• Bit-Serial TARTAN

• 2.04x faster than DaDiannao

• 1.25x more energy efficient at the same frequency

• 1.5x area overhead

• 2-bit at-a-time TARTAN

• 1.6x faster over DaDiannao

• Roughly same energy efficiency

• 1.25x area overhead

TARTAN: Result Summary
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Bit-Pragmatic Engine
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• Want to A x B

• Let’s look at A

• Which bits really matter?

Inner-Products
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• Only 8% of bits are non-zero once precision is reduced

• 15%-10% otherwise

Zero Bit Content: 16-bit fixed-point
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• Only 27% of bits are non-zero

Zero Bit Content: 8-bit Quantized (Tensorflow-like)
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• Simply Modify Stripes?

• Too Large + Cross Lane Synchronization

Pragmatic Concept: Use Shift-and-Add 
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Bit-Parallel Engine
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STRIPES
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Pragmatic: Naive STRIPES extension? Problem #1: Too Large
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• Process in groups of Max N Difference

• Example with N = 4

• Some opportunity loss, much lower area overhead

• Can skip groups of all zeroes

Solution to #1? 2-Stage Shifting
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• Process in groups of Max N Difference

• Example with N = 4

• Some opportunity loss, much lower area overhead

Solution to #1? 2-Stage Shifting
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• Different # of 1 bits

• Lanes go out of sync

• May have to fetch up to 256 different activations from 

NM

• Keep Lanes Synchronized:

• No cost: All lanes

• Extra register per column: some cost better performance

Lane Synchronization
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Bit-Pragmatic
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No Accuracy Loss

+310% performance

- 48% Energy

+ 45% Area

Better w/ 8-bit Quantized

Nets



• 8-bit Quantized Representation

Processing Only The Essential Information
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Stripes 8b Pragmatic



• Better encoding is possible and improves performance

Bit-Pragmatic
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• Operand Precision Required Varies

Proteus
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Proteus: Store in reduced precision in memory

Less Bandwidth, Less Energy
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Conventional Format: Base Precision

Data Physically aligns with Unit Inputs



Conventional Format: Base Precision

Need Shuffling Network to Route Synapses

4K input bits  Any 4K output bit position
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Proteus’ Key Idea: Pack Along Data Lane Columns
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Local Shufflers: 16b input 16b output

Much simpler



Proteus

44% less memory 

bandwidth



• Training

• Prototype

•Design Space: lower-end confs

• Unified Architecture

•Dispatcher + Compute

•Other Workloads: Comp. Photo

• General Purpose Compute Class

What’s Next
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Our Results: Performance
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• More properties to discover and exploit

• E.g., Filters do overlap significantly

• CNNs one class

• Other networks

• Use the same layers

• Relative importance different

• Training

A Value-Based Approach to Acceleration
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