
Using artificial neural networks 
for error detection in unreliable 

computations
Vassilis Vassiliadis, Konstantinos Parasyris, Christos D. Antonopoulos, 

Spyros Lalis, Nikolaos Bellas

University of Thessaly,

Volos, Greece

{vasiliad, koparasy, cda, lalis, nbellas}@uth.gr



Unreliable Computing

Unwanted causes

• Issues during the process of fabrication (e.g. variation)

• Novel technology which has not matured enough to truly be reliable

• Radiation

• Component aging

Deliberate Unreliable Computing

• Under-volting for improved energy/power efficiency

• Over-clocking for improved performance



Unreliable computing

Recipe

1. Opt for Significance-Aware Unreliable Computing

2. Detect errors before they propagate to the program output

3. Correct errors upon detection



Significance-Aware Unreliable Computing

Computations within a program are not equally important with respect 
to its final output quality.

The least important/significant parts of a program can be executed 
unreliably to improve performance (or energy/power efficiency) 
through CPU over-clocking (or CPU under-volting)



Error Detection

1. Domain expert wisdom

2. Patterns in the intermediate outputs
• Artificial Neural Networks are pretty good at discovering patterns in data



Error Correction

Borrow a page from Approximate Computing.

Correct errors via:

1. Re-execute the code in a reliable way

2. Approximate alternative implementations 
of the unreliably executed code

3. Default values

Execution cost and resulting
quality DECREASE



Artificial Neural Networks 101

Artificial Neural Networks (ANNs) are great in identifying patterns in 
data. They even out-perform humans in certain problems.



Artificial Neural Network breakdown

Fe
at

u
re

s

Hidden 
layer

Input layer

A
ct

iv
at

io
n

 la
ye

r

Hidden 
layer

A
ct

iv
at

io
n

 la
ye

r

…

Multiple hidden layers

Output layer



This work focuses on ANNs for error 
detection



Key challenges

• Choosing the input features

• Pre-processing data
• Faulty values ?

• Data balancing ?

• Normalization ?

• Which ANN configuration is the best?

• When should the training phase stop?

• How are the ANNs going to be used to classify unreliable execution as 
“good” or “bad”?
• “Executing” the ANN must be much faster than simply running the code unreliably



Running example DCT

An error free execution
produces a 43.67 dB output



Speedup vs Output quality



Best Artificial Neural Network for DCT

Runtime overhead Reliable task execution Unreliable task execution Error detection & correction

2.9 % 19.1% 61.3% 16.7%

Speedup 1.77x
Quality degradation: PSNR down to 43.49 dB from 43.67 dB



Can you tell the difference?



SDCs even though an ANN was used to 
classify outputs as “good” and “bad”



Questions?

My e-mail is vasiliad@uth.gr

mailto:vasiliad@uth.gr

