
Implementing Approximate Computing

Techniques by Automatic Code Mutation

Domenico Amelino, Mario Barbareschi, Antonino Mazzeo,
Antonio Tammaro and Alberto Bosio
Email: bosio@lirmm.fr

WAPCO 2017, Stockholm, Sweden
January, 25th 2017

UNI
NA

DIE
II I

DIPARTIMENTO DI INGEGNERIA ELETTRICA
E DELLE TECNOLOGIE DELL’INFORMAZIONE

VERSITA DEGLI STUDI DI

POLI FEDERICO II
,



Introduction Research Effort IDEA Tool Result Conclusion

Motivation
The Era of Approximate Computing

UNI
NA

DIE
II I

Energy-efficiency, computational speed, low-overhead
implementation are paramount concern in digital system design:

Heavy Processing

Big-data;

High-definition multimedia;

Performance and Cost

Energy Vs. Speed;

General Vs. Special Purpose;

has been becoming extremely hard to trade-off such features;

Literature is introducing post-Moore’s Law era, non Von Neumann
architectures, and so on...

Even though... a perfect result is often not necessary:

an approximate of a less-than-optimal result is sufficient;
approximation opens the opportunity to deal with tight performance
constraints;

Alberto Bosio – bosio@lirmm.fr 2 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Outline UNI
NA

DIE
II I

1 Introduction

2 Research Effort

3 IDEA Tool

4 Result

5 Conclusion

Alberto Bosio – bosio@lirmm.fr 3 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Outline for Introduction UNI
NA

DIE
II I

1 Introduction
Approximate Computing
Inherent application resiliency

2 Research Effort

3 IDEA Tool

4 Result

5 Conclusion

Alberto Bosio – bosio@lirmm.fr 3 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Approximate Computing in a Nutshell
Towards the trading performance off for the quality

UNI
NA

DIE
II I

Approx∼
Computing

Software-
Level

Circuits

Storage

Rather than the best possible result,
approximate computing exploits
inaccurate outputs to outperform
classical elaboration approaches:

by altering software execution;

e.g. loop perforation;

by employing inexact custom
circuits;

e.g. speculative arithmetic
operations;

by approximately storing data;

e.g. DRAM with lower refresh
rate.

Alberto Bosio – bosio@lirmm.fr 4 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Approximate Computing in a Nutshell
Towards the trading performance off for the quality

UNI
NA

DIE
II I

Approx∼
Computing

Software-
Level

Circuits

Storage

Rather than the best possible result,
approximate computing exploits
inaccurate outputs to outperform
classical elaboration approaches:

by altering software execution;

e.g. loop perforation;

by employing inexact custom
circuits;

e.g. speculative arithmetic
operations;

by approximately storing data;

e.g. DRAM with lower refresh
rate.

Alberto Bosio – bosio@lirmm.fr 4 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Approximate Computing in a Nutshell
Towards the trading performance off for the quality

UNI
NA

DIE
II I

Approx∼
Computing

Software-
Level

Circuits

Storage

Rather than the best possible result,
approximate computing exploits
inaccurate outputs to outperform
classical elaboration approaches:

by altering software execution;

e.g. loop perforation;

by employing inexact custom
circuits;

e.g. speculative arithmetic
operations;

by approximately storing data;

e.g. DRAM with lower refresh
rate.

Alberto Bosio – bosio@lirmm.fr 4 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Approximate Computing in a Nutshell
Towards the trading performance off for the quality

UNI
NA

DIE
II I

Approx∼
Computing

Software-
Level

Circuits

Storage

Rather than the best possible result,
approximate computing exploits
inaccurate outputs to outperform
classical elaboration approaches:

by altering software execution;

e.g. loop perforation;

by employing inexact custom
circuits;

e.g. speculative arithmetic
operations;

by approximately storing data;

e.g. DRAM with lower refresh
rate.

Alberto Bosio – bosio@lirmm.fr 4 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Approximate Computing in a Nutshell
Towards the trading performance off for the quality

UNI
NA

DIE
II I

Approx∼
Computing

Software-
Level

Circuits

Storage

Rather than the best possible result,
approximate computing exploits
inaccurate outputs to outperform
classical elaboration approaches:

by altering software execution;

e.g. loop perforation;

by employing inexact custom
circuits;

e.g. speculative arithmetic
operations;

by approximately storing data;

e.g. DRAM with lower refresh
rate.

Alberto Bosio – bosio@lirmm.fr 4 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Approximate Computing UNI
NA

DIE
II I

Several domains may benefit from approximation:

signal processing: image, video, audio, speech;
machine learning,
data mining;
search;
. . .

In the past, Approximate Computing was often considered an
effect of the “human interpretation”:

the literature has demonstrated the crucial role of the inherent
application resiliency.

Alberto Bosio – bosio@lirmm.fr 5 of 25



Introduction Research Effort IDEA Tool Result Conclusion

The Inherent Application Resiliency UNI
NA

DIE
II I

The Inherent Application Resiliency is a property for an algorithm
to return acceptable outcomes despite some of its inner
computations being approximate or imprecise;

Approximate Computing exploits a design approach that leverages
the inherent resiliency through optimizations which trade the
outputs quality off for enhanced performance, such as time,
energy consumption, occupied area, and so on;

Alberto Bosio – bosio@lirmm.fr 6 of 25



Introduction Research Effort IDEA Tool Result Conclusion

The Inherent Application Resiliency
Main sources

UNI
NA

DIE
II I

The property mainly inherits from:

Inherent

Application

Resilience

`Perturbed'
Real Inputs

Redundant
Input data

Iterative
algorithms/
Self-Healing

Stochastic
Compu-
tations

No Golden
Output

Perceptual
Limitations

1

1Venkataramani, S. et al. Approximate computing and the quest for computing efficiency. 52nd Annual Design
Automation Conference

Alberto Bosio – bosio@lirmm.fr 7 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Approximate Design... Possible? UNI
NA

DIE
II I

A new design parameter

Establish how much approximate;

Trade resources saved off for inaccuracy.

Integration in classical flow

Algorithms, tools, languages, models . . .

Ensemble of Approximate Computing techniques.

Alberto Bosio – bosio@lirmm.fr 8 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Outline for Research Effort UNI
NA

DIE
II I

1 Introduction

2 Research Effort
Approximate Computing Tools and Methodologies

3 IDEA Tool

4 Result

5 Conclusion

Alberto Bosio – bosio@lirmm.fr 8 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Precimonious
Tuning Assistant for Floating-Point Precision

UNI
NA

DIE
II I

It is an automatic tuning tool for the IEEE 754 floating point types
of C/C++ code by means of annotation that gives the user-desired
accuracy;

It uses the LLVM IR (so it works on compiled codes) to generate
and evaluate different configurations using an algorithm based on
the delta-debugging;

The results are in the form of LLVM IR and they must be manually
mapped to the original source code, in order to give the actual
result to the programmer;

The search algorithm is based on the delta-debugging with the
adoption of an heuristic pruning technique.

Alberto Bosio – bosio@lirmm.fr 9 of 25



Introduction Research Effort IDEA Tool Result Conclusion

ACCEPT
A Programmer-Guided Compiler Framework for Practical Approximate Computing

UNI
NA

DIE
II I

Adaptation for C/C++ of EnerJ (from the same authors) which
works in the Java environment:

It aims to help the programmers to approximate their own code,
because authors claim automatic approaches loses practicality and
controllability;
It supports the main approximation techniques such as loop
perforation or synchronization relaxation;
It works on the LLVM Intermediate Representation, propagating the
source code annotations to manage the real approximation at this
level;

To support the new dialect it introduces a new compiler (enerc and
enerc++) for the LLVM infrastructure;

It considers approximation effects which are linear! There is no a
proper exploration algorithm.

Alberto Bosio – bosio@lirmm.fr 10 of 25



Introduction Research Effort IDEA Tool Result Conclusion

REACT
A Framework for Exploration of Approximate Computing Techniques

UNI
NA

DIE
II I

It extends ACCEPT, using it to intercept at LLVM IR level the
instructions that has been marked as approximate;

This hook mechanism is used to redirect those instructions to
user-defined approximate techniques that they have implemented
to quickly compare their effect;

A simple linear energy model is presented in order to estimate the
energy savings available through approximation.

Alberto Bosio – bosio@lirmm.fr 11 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Outline for IDEA Tool UNI
NA

DIE
II I

1 Introduction

2 Research Effort

3 IDEA Tool
Approximation through Mutation
IDEA for loop perforation: a walkthrough

4 Result

5 Conclusion

Alberto Bosio – bosio@lirmm.fr 11 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Mutate And Explore UNI
NA

DIE
II I

Available tool and methodologies do not approach Approximate
Computing with a general technique:

dependency to the language target;
software or hardware;
handling of only one technique or few variants of one;
quality/error estimation is not flexible;
access to the source code or customization of the tool.

We tried to deal with such problems by introducing a new
methodology and a corresponding tool:

The novelty stands in make an algorithm approximate by mutation;
The whole approach is totally user-defined.

Alberto Bosio – bosio@lirmm.fr 12 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Towards Automatic Exploration of Variants UNI
NA

DIE
II I

Hypotheses

The error is directly related to
the magnitude of the
approximation applied on
involved operations;

The application tolerates at
most a certain error
threshold;

The error cannot be
universally defined.

Alberto Bosio – bosio@lirmm.fr 13 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Towards Automatic Exploration of Variants UNI
NA

DIE
II I

Hypotheses

The error is directly related to
the magnitude of the
approximation applied on
involved operations;

The application tolerates at
most a certain error
threshold;

The error cannot be
universally defined.

Alberto Bosio – bosio@lirmm.fr 13 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Towards Automatic Exploration of Variants UNI
NA

DIE
II I

Hypotheses

The error is directly related to
the magnitude of the
approximation applied on
involved operations;

The application tolerates at
most a certain error
threshold;

The error cannot be
universally defined.

Alberto Bosio – bosio@lirmm.fr 13 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Towards Automatic Exploration of Variants UNI
NA

DIE
II I

Hypotheses

The error is directly related to
the magnitude of the
approximation applied on
involved operations;

The application tolerates at
most a certain error
threshold;

The error cannot be
universally defined.

Requirements

Tuning process over every
approximable inner operation;

Customizable quality
function with respect to the
original version;

Controllable amount of error;

Automatic exploration of
approximate configurations.

Alberto Bosio – bosio@lirmm.fr 13 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Towards Automatic Exploration of Variants UNI
NA

DIE
II I

Hypotheses

The error is directly related to
the magnitude of the
approximation applied on
involved operations;

The application tolerates at
most a certain error
threshold;

The error cannot be
universally defined.

Requirements

Tuning process over every
approximable inner operation;

Customizable quality
function with respect to the
original version;

Controllable amount of error;

Automatic exploration of
approximate configurations.

Alberto Bosio – bosio@lirmm.fr 13 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Towards Automatic Exploration of Variants UNI
NA

DIE
II I

Hypotheses

The error is directly related to
the magnitude of the
approximation applied on
involved operations;

The application tolerates at
most a certain error
threshold;

The error cannot be
universally defined.

Requirements

Tuning process over every
approximable inner operation;

Customizable quality
function with respect to the
original version;

Controllable amount of error;

Automatic exploration of
approximate configurations.

Alberto Bosio – bosio@lirmm.fr 13 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Towards Automatic Exploration of Variants UNI
NA

DIE
II I

Hypotheses

The error is directly related to
the magnitude of the
approximation applied on
involved operations;

The application tolerates at
most a certain error
threshold;

The error cannot be
universally defined.

Requirements

Tuning process over every
approximable inner operation;

Customizable quality
function with respect to the
original version;

Controllable amount of error;

Automatic exploration of
approximate configurations.

Alberto Bosio – bosio@lirmm.fr 13 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Approximate C/C++ Algorithms
We have got an IDEA!

UNI
NA

DIE
II I

We devised IDEA (IIDEAA Is a Design Exploration tool for
Approximating Algorithms), a novel approach which explores
possible inaccuracies that can be applied on an algorithm written
in C/C++:

IDEA integrates clang-Chimera, which is a source-to-source
transformation tool, which can be configured with customizable
transformation rules;
the generation of approximate mutants is: fully automatic, generic
(ideally, IDEA would implement every proposed Approximate
Computing technique), and is runnable in software;

IDEA explores design solutions with a B&B approach:

Solutions define inherently a Pareto frontier;
They can be used to configure both hardware and software
algorithms;

IDEA tools are open source and can be freely downloaded and
extended.

Alberto Bosio – bosio@lirmm.fr 14 of 25



Introduction Research Effort IDEA Tool Result Conclusion

IDEA Flow UNI
NA

DIE
II I

clang-Chimera

Operator-1
Operator-2
. . .

user
config

IDEA

Original
Project Files

Plug-in 1

Plug-in 2
. . .

user
config

Mutated Files

op
config

Pareto-frontier
configurations

Algorithm side IDEA side

M
u
ta

tio
n

D
esign

S
pa

ce
E
xp

lo
ra

tio
n

C
od

in
g

Tool flow

Alberto Bosio – bosio@lirmm.fr 15 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Clang-Chimera UNI
NA

DIE
II I

Clang-Chimera is part of the Chimera Tools, a set of tools for
mutating C/C++;

Free available (GPLv3) at: https://git.io/vKOZK

It is implemented using the Chimera Design, that is based on the
Mutation Template concept, an efficient and flexible way to
generate mutants from an abstract syntax tree (AST)
representation of the source code;
The idea is to avoid unnecessary AST visits to produce multiple
mutants of the same target file, so a mutation template can be
seen as a “list” of locations on the AST, in which it will be
necessary to apply some kind of mutations.

Alberto Bosio – bosio@lirmm.fr 16 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Clang-Chimera UNI
NA

DIE
II I

Clang-Chimera is part of the Chimera Tools, a set of tools for
mutating C/C++;

Free available (GPLv3) at: https://git.io/vKOZK

It is implemented using the Chimera Design, that is based on the
Mutation Template concept, an efficient and flexible way to
generate mutants from an abstract syntax tree (AST)
representation of the source code;
The idea is to avoid unnecessary AST visits to produce multiple
mutants of the same target file, so a mutation template can be
seen as a “list” of locations on the AST, in which it will be
necessary to apply some kind of mutations.

Alberto Bosio – bosio@lirmm.fr 16 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Clang-Chimera UNI
NA

DIE
II I

Clang-Chimera is part of the Chimera Tools, a set of tools for
mutating C/C++;

Free available (GPLv3) at: https://git.io/vKOZK

It is implemented using the Chimera Design, that is based on the
Mutation Template concept, an efficient and flexible way to
generate mutants from an abstract syntax tree (AST)
representation of the source code;

The idea is to avoid unnecessary AST visits to produce multiple
mutants of the same target file, so a mutation template can be
seen as a “list” of locations on the AST, in which it will be
necessary to apply some kind of mutations.

Alberto Bosio – bosio@lirmm.fr 16 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Clang-Chimera UNI
NA

DIE
II I

Clang-Chimera is part of the Chimera Tools, a set of tools for
mutating C/C++;

Free available (GPLv3) at: https://git.io/vKOZK

It is implemented using the Chimera Design, that is based on the
Mutation Template concept, an efficient and flexible way to
generate mutants from an abstract syntax tree (AST)
representation of the source code;
The idea is to avoid unnecessary AST visits to produce multiple
mutants of the same target file, so a mutation template can be
seen as a “list” of locations on the AST, in which it will be
necessary to apply some kind of mutations.

Alberto Bosio – bosio@lirmm.fr 16 of 25



Introduction Research Effort IDEA Tool Result Conclusion

IDEA Supporting Loop-Perforation UNI
NA

DIE
II I

Let us consider two well-known Approximate Computing
techniques:

Loop First

for(i = 0; i < n; i += stride){
body

}

Loop Second

for(i = 0; i < n; i ++){
if(i % stride != 0)

body

}

They are defined to skip some iterations of a loop, aiming at save
time execution worsening the output result;

Both of them requires the definition of the stride value.

Alberto Bosio – bosio@lirmm.fr 17 of 25



Introduction Research Effort IDEA Tool Result Conclusion

IDEA Supporting Loop-Perforation
Defining Operators in clang-Chimera

UNI
NA

DIE
II I

In order to define a new mutator
(or operator), the user needs to
inherit the mutator class and has
to define 3 methods:

1 getStatementMatcher:
coars-grain match over the
AST;

2 match: fine-grain match, which
prepares variables for mutate;

3 mutate: modifies involved
AST nodes;

clang-Chimera

Operator-1
Operator-2
. . .

user
config

IDEA

Original
Project Files

Plug-in 1

Plug-in 2
. . .

user
config

Mutated Files

op
config

Pareto-frontier
configurations

Algorithm side IDEA side

M
u
ta

tio
n

D
esign

S
pa

ce
E
xp

lo
ra

tio
n

C
od

in
g

Tool flow

W.r.t. loop performation, the first method looks for the forStm
nodes, while the others applies the mutation whenever there are
proper initialization and termination conditions.

Alberto Bosio – bosio@lirmm.fr 18 of 25



Introduction Research Effort IDEA Tool Result Conclusion

IDEA Supporting Loop-Perforation
Defining IDEA plugins

UNI
NA

DIE
II I

IDEA has to be configured with
proper plug-ins which are able to

1 handle mutated source files
and configurations;

2 modify mutation parameters
(e.g. strides), accordingly to
the approximate computing
technique;

clang-Chimera

Operator-1
Operator-2
. . .

user
config

IDEA

Original
Project Files

Plug-in 1

Plug-in 2
. . .

user
config

Mutated Files

op
config

Pareto-frontier
configurations

Algorithm side IDEA side

M
u
ta

tio
n

D
esign

S
pa

ce
E
xp

lo
ra

tio
n

C
od

in
g

Tool flow

Once the mutators and the plug-ins are defined, the tool-flow is
able to explore approximate variants of an arbitrary source code
written in C/C++.

Alberto Bosio – bosio@lirmm.fr 19 of 25



Introduction Research Effort IDEA Tool Result Conclusion

IDEA Supporting Loop-Perforation
Getting approximate variants

UNI
NA

DIE
II I

In order to mutate a source code,
the user has to provide

1 the source code itself;
2 a configuration file for

clang-Chimera reporting target
C/C++ functions and the list of
operators that have to be
applied to the source code;

The output is the mutated
source code and a report, which
contain the list of mutated files
and the operators applied.

clang-Chimera

Operator-1
Operator-2
. . .

user
config

IDEA

Original
Project Files

Plug-in 1

Plug-in 2
. . .

user
config

Mutated Files

op
config

Pareto-frontier
configurations

Algorithm side IDEA side

M
u
ta

tio
n

D
esign

S
pa

ce
E
xp

lo
ra

tio
n

C
od

in
g

Tool flow

IDEA uses this file together with the error/quality function,
provided by the user, to evaluate each approximate variant.

Alberto Bosio – bosio@lirmm.fr 20 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Outline for Result UNI
NA

DIE
II I

1 Introduction

2 Research Effort

3 IDEA Tool

4 Result
Experimental result

5 Conclusion

Alberto Bosio – bosio@lirmm.fr 20 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Loop Perforation UNI
NA

DIE
II I

As last step, we use two algorithms as target of the IDEA flow:

Taylor series expansion

Expansion of function
ex · ln(1 + x);

Function evaluated up to the
250 power;

Error calculated over 104

points as absolute difference
with an oracle.

Inverse Discrete cosine
transformation

Decompression of 10 gray scale
images;

8x8 pixels block;

Error computed as average
PSNR between original and
decompressed images.

Alberto Bosio – bosio@lirmm.fr 21 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Loop Perforation
Experimental evidences

UNI
NA

DIE
II I

As last step, we use two algorithms as target of the IDEA flow:

Taylor required the exploration of
106 variants for the LoopFirst
and 105 for the LoopSecond.

IDCT required the exploration of
200 variants for the LoopFirst
and 3000 for the LoopSecond.

Alberto Bosio – bosio@lirmm.fr 22 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Focus on the IDCT UNI
NA

DIE
II I

Original DCT Compression Vs. IDEA Configuration

PSNR: 14.637

Alberto Bosio – bosio@lirmm.fr 23 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Outline for Conclusion UNI
NA

DIE
II I

1 Introduction

2 Research Effort

3 IDEA Tool

4 Result

5 Conclusion
Conclusion

Alberto Bosio – bosio@lirmm.fr 23 of 25



Introduction Research Effort IDEA Tool Result Conclusion

Conclusion and Remarks UNI
NA

DIE
II I

IDEA is an extensible Approximate Computing tool as it relies on
the concept of the mutation code, performed by clang-Chimera
tool:

It is able to handle any kind of approximate computing technique;
the mutation algorithm is written in C/C++;
IDEA provides Pareto-solutions that can be use for both hardware
and software projects;

We proved the approach with experimental result and we also
demonstrated its feasibility by case studies.

Alberto Bosio – bosio@lirmm.fr 24 of 25



Implementing Approximate Computing

Techniques by Automatic Code Mutation

Domenico Amelino, Mario Barbareschi, Antonino Mazzeo,
Antonio Tammaro and Alberto Bosio
Email: bosio@lirmm.fr

WAPCO 2017, Stockholm, Sweden
January, 25th 2017

UNI
NA

DIE
II I

DIPARTIMENTO DI INGEGNERIA ELETTRICA
E DELLE TECNOLOGIE DELL’INFORMAZIONE

VERSITA DEGLI STUDI DI

POLI FEDERICO II
,


	Introduction
	Approximate Computing
	Inherent application resiliency

	Research Effort
	Approximate Computing Tools and Methodologies

	IDEA Tool
	Approximation through Mutation
	IDEA for loop perforation: a walkthrough

	Result
	Experimental result

	Conclusion
	Conclusion

	Appendix
	The End


